Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

A Government-Backed Cryptocurrency
for Universal Basic Income

Author: Supervisor:
Matthew S. Morrison Prof. William J. Knottenbelt

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing Science of Imperial College London

September 2018

Abstract

As Artificial Intelligence increasingly threatens human employment globally, the con-
cept of Universal Basic Income, in which a government provides all citizens a fixed,
regular payment regardless of income, is increasingly being suggested as a solution.

Yet governments, and indeed many recent UBI trials, have so far relied on traditional
financial infrastructure to process these types of transactions. We believe that the use
of cryptocurrency and blockchain technology can transform the process, making it
cost effective, flexible and, most importantly, transparent.

The cryptocurrency-based UBI systems that exist today tend to lack real financial
value, with the supply of their tokens growing ad infinitum and thus exhibiting de-
flationary mechanics. Furthermore, these systems tend to lack a robust identification
process (with many using SMS-based or social media sign up mechanisms), mean-
ing that they are susceptible to Sybil attacks, in which users can sign up for multiple
accounts.

In this project we have designed and implemented a government-backed UBI system
using smart contracts on the Ethereum blockchain. In order to give the token real
financial value, businesses can exchange their received UBI tokens for real Ether at
a pre-determined exchange rate. This underpins the value of the token, giving busi-
nesses an incentive to accept the token as payment for their goods and services.

In order to prevent Sybil attacks, this project implements a system of zero-knowledge
proofs using a modified version of the ZoKrates software. This system allows users
to prove that they hold key information on themselves (existing government data
including name, national insurance number, date of birth and address), without dis-
closing this information to the entire public blockchain during the sign up process.
The only parameters visible to the network after sign up will be eight elliptic curve
pairings and the public inputs (the first 32 bits of the SHA256 hash).

Our React-based web application allows consumers to sign up to the service (hid-
ing the underlying complexity of the zero-knowledge proofs) and spend their UBI
tokens at registered businesses. Furthermore, functionality within the smart con-
tracts allows third parties to use the UBI token in their applications.

UBI experts have endorsed the key elements of the project, including the use of
zero-knowledge proofs for user identification and backing the token with real value.
Whilst a number of improvements can be made, including the reduction of costs and
a second layer of identification, the consensus is that this project has developed an
effective solution for a government-backed Universal Basic Income.

Acknowledgments

I am grateful to my supervisor, Prof. William J. Knottenbelt, for his enthusiasm and
help throughout the duration of my project and studies.

Contents

1 Introduction
1.1 Motivation v i e e e e e e e e e
1.2 Aims and Objectives
1.3 Contributions e e
1.4 Outline e e
1.5 Legal, Ethical and Social Considerations
1.6 Statement of Originality and Publications

2 An Overview of UBI
2.1 TheHistoryof UBL,
22 ArgumentsForUBI
2.3 ArgumentsAgainst UBI.
2.4 The Growing Need forUBI
2.5 Non-Cryptocurrency UBI Experiments
2.6 Cryptocurrency UBI Solutions
2.7 Worglcoin e e e e

3 Smart Contract Design
3.1 AnOverview of Ethereum
3.2 Smart Contract Programming
3.3 Functionality e
3.4 Security e e e e e e
3.5 Optimisation o vt e e e e e e e e e e
3.6 Testing o i i e e e e e e e e

4 Identification
4.1 The Identification Problem
4.2 Existing Solutions
4.3 Interactive Zero-Knowledge Proofs
4.4 Non-Interactive Zero-Knowledge Proofs
4.5 Zk-SNARKsin Ethereum
4.6 WorglCoin’s Identification System

5 Using Worglcoin
5.1 Functionality Overview i v i v i it
5.2 UBITokenInterface uu....

0000 WN = =

CONTENTS

Table of Contents

6 Evaluation

6.1 Evaluation Methodology
6.2 Interviews
6.3 UserFeedback.
6.4 Merchant Feedback
6.5 Summarising the Feedback
6.6 Addressing the Feedback

7 Conclusion

7.1 Summary of Achievements
7.2 Evaluation Overview
7.3 Applications
74 FutureWork

Bibliography

Glossary

Appendices

A Ethics Checklist

B Legal, Social and Ethical Considerations
C Non-Cryptocurrency UBI Experiments

D Cryptocurrency UBI Solutions

70

............ 70
............ 71
............ 75
............ 75
............ 81
............ 82

83

............ 83
............ 84
............ 85
............ 86

88

93

95

95

98

99

100

vi

List of Figures

1.1 Elon Musk advocates the introductionof UBI
1.2 Mark Zuckerberg advocates the introductionof UBI
1.3 The UBIsystemdesigno.....
1.4 Gas costs of the Worglcoin smart contract
1.5 WorglCoin’s identification system
1.6 The web application homepage

2.1 Key historical figures o
2.2 England’spoorlawsin 1834
2.3 UK Government spending on welfare in 2016-2017
2.4 Inequality ratesover time v v v v ...
2.5 Labour share of national income
2.6 Costof UBIschemeinthe UK
2.7 Potential rates of job automation by country

3.1 The consumer structure used in the WorglCoin smart contract. . . .

3.2 The business structure used in the WorglCoin smart contract
3.3 The typical structure used to keep track of key elements
3.4 Modifiers ensure functions are being executed as intended
3.5 Events trigger updates to the user interface
3.6 Measures taken to prevent a ‘re-entrancy’ attack
3.7 OpenZeppelin’s safe arithmetic operations library
3.8 Gas costs of the Worglcoin smart contract
3.9 Smart contract unittestingo 0 ..
3.10 Smart contract code COVerage v v v v v e e

4.1 TheAliBabacave.o.o....
4.2 An R1CS representation of the flattenedcode
4.3 Step 1 of the QAP transformation
4.4 Step 2 of the QAP transformation
4.5 Step 3 of the QAP transformation
4.6 Step 4 of the QAP transformation
4.7 The QAP problem in terms of polynomials
4.8 The solution to the polynomial QAP problem
4.9 Anellipticcurve. L.
4.10 Point representation of an ellipticcurve

vii

U WDNDN

LIST OF FIGURES Table of Contents

4.11 WorglCoin’s identification system 57
5.1 The final design of the Worglcoin system 58
5.2 Contract owner user guide: stepone 60
5.3 Contract owner user guide: steptwo 60
5.4 Contract owner user guide: stepthree 61
5.5 Contract owner user guide: stepfour 61
5.6 Business user guide: steponeo 62
5.7 Business user guide: Steptwoo 63
5.8 Business user guide: stepthree 63
5.9 Business user guide: stepfour 64
5.10 Business user guide: stepfive 64
5.11 Consumer user guide: stepone 66
5.12 Consumer user guide: steptwo 66
5.13 Consumer user guide: stepthree 67
5.14 Consumer user guide: stepfour 67
5.15 Consumer user guide: stepfive 68
5.16 Consumer user guide: stepSiX i i vt e 68
5.17 The Worglcoin smart contract interface. 69
6.1 Arguments for UBI from Alex Howlett 73
6.2 Arguments for UBI from OttoLehto 73
6.3 Arguments against UBI from Donald Hirsch 73
6.4 Key features of UBI from OttoLehto 73
6.5 Blockchain is not currently ready from Lennard Hulsbos 74
6.6 Advantages of identification method from Alex Howlett 74
6.7 Criticism of identification method from Alex Howlett 74
6.8 Advantages of devaluation mechanism from Alex Howlett 74
6.9 Google survey given to USers« v v it et e 76
6.10 Question one of the usersurvey 77
6.11 Question two of theusersurvey 77
6.12 Question three of the usersurvey 78
6.13 Question four of theusersurvey 78
6.14 Question five of the usersurvey 79
6.15 Question six of the usersurvey 79
6.16 Question seven of the usersurvey 80
6.17 Question eight of the usersurvey 80

viii

Chapter 1

Introduction

Key technologists have advocated the introduction of Universal Basic Income as a
policy to mitigate the threat of Artificial Intelligence. In this project we have de-
signed and implemented a government-backed UBI system using smart contracts
on the Ethereum blockchain. In order to prevent Sybil attacks, a system of zero-
knowledge proofs is in place, allowing unique individuals to sign up to the scheme
without disclosing any private information.

1.1 Motivation

With Artificial Intelligence (‘Al’) threatening to displace human workers across many
different industries, economists and technologists have been grappling with poten-
tially dire consequences of such a transition, including higher levels of unemploy-
ment and growing wealth inequality. One solution that has been put forward by
leading technologists, including Elon Musk [1] (see Figure 1.1) and Mark Zucker-
berg [2] (see Figure 1.2), is Universal Basic Income (‘UBI’). UBI is a system in which
a government (or private entity) gives all citizens a fixed, regular payment regard-
less of the citizen’s income level, age or employment status.

In 2017, we saw many countries and technology firms experimenting with UBI.
The majority of these systems propose direct payments to citizens, much like many
welfare payments are distributed today. This project explores the potential use of
cryptocurrency and blockchain technology to implement UBI. Such a system would
allow a low-fee way to transfer UBI funds (no middlemen), offer transparency (all
payment mechanisms are implemented in code) and provide flexibility (in case pa-
rameters of the scheme need to be changed).

An area of focus will be the drawbacks of current cryptocurrency-backed UBI schemes,
including the limited value of a typical UBI token (acting as a disincentive to busi-
nesses to sell their goods) and the problem of uniquely identifying citizens to receive
the token. This project adds to the literature on UBI schemes by exploring and imple-
menting the technology using an Ether-backed UBI coin and zero-knowledge proofs
to privately identify citizens.

1.2. AIMS AND OBJECTIVES Chapter 1. Introduction

“I think there is a pretty good chance we end up with Universal Basic
Income... due to automation. I am not sure what else one would do.
People will have time to more interesting, more complex things. We have
to figure how to integrate in the future with advanced A.I., thats going to
be one of the toughest challenges.” [1]

Figure 1.1: Elon Musk advocates the introduction of UBI

“Today, we have a level of wealth inequality that hurts everyone... It
is time for our generation to define a new type of social contract... We
should explore ideas like Universal Basic Income to make sure everyone
has a cushion to try new ideas.” [2]

Figure 1.2: Mark Zuckerberg advocates the introduction of UBI

1.2 Aims and Objectives

The aims and objectives of this project are to:

Examine existing implementations of UBI using traditional direct cash pay-
ments and cryptocurrencies.

Develop a new Ethereum-based UBI token which is backed by Ether to give it
real financial value.

Thoroughly test the security and efficiency of the smart contracts underpinning
the UBI token.

Implement a robust and secure zero-knowledge proof based identification sys-
tem.

Develop a web application to allow users an easy way to sign up to the scheme
and spend their tokens on real products.

Chapter 1. Introduction 1.3. CONTRIBUTIONS

1.3 Contributions

This project designs and implements an Ether-backed UBI token with a zero-knowledge
proof based system for citizen identification. The specific contributions are outlined
below.

Implementation of an Ether-backed UBI coin

A key drawback of current UBI systems using cryptocurrency is that the tokens tend
to lack real financial value. Given that these schemes create a token in which supply
will grow ad infinitum, businesses often have little incentive to offer their products
in exchange for a deflationary UBI token. This leads to users having very little choice
regarding the items they can purchase with their tokens.

In this project an Ether-backed UBI token has been created to solve this problem.
The system has been built using smart contracts (see Figure 1.3), allowing the con-
tract owner to transfer Ether into the contract and set an Ether value for tokens.
Once a business has received UBI tokens for their products, this will be converted to
real Ether at a pre-determined exchange rate. This underpins the value of the token,
giving businesses an incentive to accept the token as payment for their goods and
services.

Business Consumer Contract Owner

Interacts with --> <-- Interacts with

<-- Requests zero-

knowledge proof i
Node Server Front-End <-- Serves Serving Platform
(Running Docker) (React, web3.js) (’OC:; zzf’;'r"ﬁj I_fgﬁfaf
Send zero-knowledge
proofparameters e k) A
& i
3 S
3 &
! 2
\" »
: <-- Sends zk-SNARK :
! zk-SNARK Contract proof 1
: (Zero-knowledge proof UBI Smart Contract '
I verification) (UBI system logic) ;
: Verifies zk-SNARK :
| proof=-> Blockchain |

Figure 1.3: The UBI system design

1.3. CONTRIBUTIONS Chapter 1. Introduction

In-Depth Smart Contract Security and Efficiency Review

One of the key benefits of implementing a UBI system using cryptocurrency and
blockchain technology is cost. Blockchain technology allows rules and parameters
to be written in code and easily changed. Furthermore, given the lack of mid-
dlemen in the operation (e.g. individuals administering payments), the cost of a
cryptocurrency-based UBI system is relatively low.

For this reason, this project places a lot of focus on smart contract efficiency. There
are two main costs when it comes to deploying smart contracts: the one-off initial
contract deployment and the ongoing cost of function execution. A thorough review
of smart contract efficiency has been conducted (see Figure 1.4), with an outline of
all the steps taken to reduce the cost of implementing the UBI system.

Furthermore, the reputation of blockchain applications has suffered in recent years
from several high-profile security exploitations. This can often occur from small mis-
takes in the smart contract code, or a lack of understanding around key functionality
of a smart contract.

Therefore, this project conducts an in-depth security review of the smart contracts,
outlining the key vulnerabilities typically seen and the steps that have been taken
to mitigate these vulnerabilities. As a result, the UBI system implemented in this

project is relatively low cost and secure, both critical in a government system of this
kind.

Gas Price (Gwei) 3

Gas Price (Ether) 0.000000003

USD Per Ether 22812

Gas Price (USD) 0.00000068436

Function Gas Units Cost Beared By Cost (Gwei) Cost (Ether) Cost (USD)
Contract Creation + Deployment 266,666,667 Government 800,000,000 0.80 182.50
addBusiness 159,465 Government 478,395 0.00 0.11
addConsumerHash 44,755 Government 134,265 0.00 0.03
buyltem 189,970 Consumer 569,910 0.00 0.13
changeOwner 28,882 Government 86,646 0.00 0.02
changeTokenValue 28,176 Government 84,528 0.00 0.02
consumerSignUp 3,142,076 Consumer 9,426,228 0.01 2.15
makeComplaint 67,351 Consumer 202,053 0.00 0.05
markOrderAsSent 66,824 Business 200,472 0.00 0.05
changeTokenBalance 28,270 Government 84,810 0.00 0.02
resetComplaint 28,146 Consumer 84,438 0.00 0.02
resetTokenBalance 31,139 Government 93,417 0.00 0.02
sellltem 291,114 Business 873,342 0.00 0.20
topUpContract 43,181 Government 129,543 0.00 0.03

Figure 1.4: Gas costs of the Worglcoin smart contract

Chapter 1. Introduction 1.3. CONTRIBUTIONS

Zero-Knowledge Proof Based Identification System

One of the most challenging aspects of a UBI system is identifying unique individuals
to receive your coin. Without a robust system of identification, the scheme is vulner-
able to Sybil attacks, where malicious users create fraudulent accounts in order to
subvert and impede the functionality of your system.

Given that the government already holds a significant amount of pre-existing data
on citizens (e.g. National Insurance numbers, resident address and age), this project
explores the idea of users supplying their own information to prove they are indeed
a unique citizen.

However, given that the public, permissionless Ethereum blockchain has been used
for the implementation, no transaction can be private. This means that a user would
not be able to submit details to the smart contract for verification without broadcast-
ing their private details to every participant on the network.

This project implements a system of zero-knowledge proofs (see Figure 1.5), al-

lowing users to prove they hold key information on themselves, without disclosing
the information to the entire network.

The government simply adds the hash of

the information to the contract. No private Smart Contract
information is revealed.
Citizen A
_— |) SR s | <conTRacT>
National Insurance
Date of Birth

Address
Government

National Insurance
Date of Birth
Address A citizen proves that they have all the
Citizen information required to create hash. No
private information is revealed.

Citizen A
Zero-Knowledge
) | e) Nl mmmm) | </conTRacT>

Figure 1.5: WorglCoin’s identification system

1.3. CONTRIBUTIONS Chapter 1. Introduction

Web Application for Sign Up and Spending

Our React-based web application (see Figure 1.6) allows consumers to sign up to
the service and spend their UBI tokens at registered businesses. The web application
also allows businesses to supply new products, and track all orders that have been
made.

Furthermore, functionality within our system of smart contracts allows third party
applications to accept the UBI token on their website. Their applications just need
to query and execute certain functions, allowing them to check a user’s balance, buy
an item and transfer tokens.

-® WorglCoin - Ether-Backed Cryj _

C' @ localhost:3000 Y & i

WorglCoin Consumer Sign Up

WorglCoin

An Ether'Backed Univefsal Basic Income

Consumer Sign Up

Figure 1.6: The web application homepage

Chapter 1. Introduction 1.4. OUTLINE

1.4 Outline
The remainder of this report is organised as follows:

Chapter 2 examines the concept of Universal Basic Income, the arguments for and
against such a scheme and the real-world implementation of schemes worldwide.
Furthermore, a new UBI token is introduced, WorglCoin, which is backed by Ether
and has a mechanism incentivising users to spend the token.

Chapter 3 outlines the design and implementation of the UBI system using Ethereum
smart contracts. The main functionality of the system is examined, allowing con-
sumers and businesses to sign up and exchange tokens for goods and services. Fur-
thermore, a thorough review of security is conducted, looking into potential security
vulnerabilities and measures that have been implemented to mitigate these vulner-
abilities. A number of methods have been used to minimise the cost of the system,
both for the one-off deployment of the smart contracts and ongoing function execu-
tion.

Chapter 4 examines the problem of uniquely identifying individuals in a UBI system.
A number of solutions have been implemented by existing cryptocurrency-based UBI
schemes and their limitations are discussed. A thorough overview of zero-knowledge
proofs is conducted, exploring the mathematics behind them, as well as how they
are implemented on Ethereum today. The UBI system outlined in this project uses
pre-existing government data, alongside zero-knowledge proofs, to ensure that citi-
zens are uniquely identified.

Chapter 5 outlines the implementation and functionality of the React-based web
application, allowing consumers to sign up to the service and spend their UBI tokens
at registered businesses. This chapter also examines the interface that has been cre-
ated, allowing third party applications to accept the UBI token on their sites.

Chapter 6 outlines the evaluation process of the project. This has been conducted
through interviews with Universal Basic Income experts and user testing with poten-
tial UBI recipients and merchants.

Chapter 7 concludes the report by summarising the achievements of this project
and highlighting the potential opportunities for further work.

1.5. LEGAL, ETHICAL AND SOCIAL CONSIDERATIONS Chapter 1. Introduction

1.5 Legal, Ethical and Social Considerations
Consideration of all legal, ethical and social considerations has been made. A de-

tailed table outlining all legal, ethical and social considerations can be found in Ap-
pendix A. A detailed explanation of all considerations can be found in Appendix B.

1.6 Statement of Originality and Publications

I declare that this thesis was composed by myself, and that the work that it presents
is my own except where otherwise stated.

Chapter 2

An Overview of UBI

This chapter covers the economic and technical material necessary to understand the
rationale and implementation of a UBI system. Furthermore, the use of cryptocur-
rency in creating a UBI system is explored and justified.

2.1 The History of UBI

The concept of a minimum basic income was first being discussed at the beginning
of the 16" century by fellow humanists Thomas More [3] and Johannes Ludovicus
Vives [4] (see Figure 2.1 [5] [6]). They both argued that such a scheme would im-
prove the quality of an individual’s life and prevent them from resorting to crime.
This line of argument inspired many subsequent schemes, including a system of poor
relief entitled ‘England’s Poor Laws’ [7] (see Figure 2.2 [8]).

Much of the following academic thinking on the topic concentrated on the equal
ownership of land as the foundation of a minimum standard of living. For example,
Joseph Charlier [9] proposed granting every citizen a fixed payment on the basis of
the rental value of all real estate.

Universal Basic Income (‘UBI’) as a concept was reignited in the 20" century by
a number of economists, including Milton Friedman (although he referred to it be-
ing implemented as a negative income tax) [10]. Furthermore, Martin Luther King
Jr. was a strong advocate of a guaranteed minimum income to provide equality and
the abolition of poverty [11].

The modern interpretation of UBI (and the one we shall be using throughout this
report) is the government provision of a fixed payment to all citizens, regardless of
income level, employment status or any other discriminating factor. The only stipu-
lations of the payment should be that the individual is a citizen of that country.

2.1. THE HISTORY OF UBI Chapter 2. An Overview of UBI

Thomas More Johannes Ludovicus Vives

Figure 2.1: Key historical figures

| r l‘” / |h

mr

Out-door Relief

Figure 2.2: England’s poor laws in 1834

10

Chapter 2. An Overview of UBI 2.2. ARGUMENTS FOR UBI

2.2 Arguments For UBI

Argument 1: Cut Welfare Costs

A common argument in support of UBI is that it could dramatically reduce govern-
ment bureaucracy. By providing a single payment to every citizen, this could replace
the hugely complex and convoluted welfare system many Western economies have
in place today.

In 2016-2017, the UK government spent c.£217bn on the welfare state [12] (equiva-
lent to c.£8,000 per household), including c.£92bn on the state pension and c.£27bn
in personal tax credits (see Figure 2.3). Whilst the cost of implementation is hard
to estimate, it can confidently be said that the system employs a huge number of
people with many separate disparate systems.

Implementing just one payment to each citizen, without any bias or means-testing,
could potentially eliminate a huge amount of overhead in the welfare system.

Job Seekers Allowance
£2bn

Child Benefit
£12bn

Incapacity Benefits

State Pension
£92bn

Total =
£217bn
Other Social Security

Benefits . Pesonal Tax Credits

£26bn £27bn

Housing Benefit
£21bn

Figure 2.3: UK Government spending on welfare in 2016-2017

11

2.2. ARGUMENTS FOR UBI Chapter 2. An Overview of UBI

Argument 2: End Welfare Trap

The second common argument is that UBI is necessary to end the welfare trap (also
called the ‘unemployment trap’). Individuals who rely on means-tested welfare pay-
ments are often disincentivised from rejoining the labour force, as their absolute in-
come sometimes falls as a result of finding work. This distorts the incentives within
our economy and can move people away from seeking productive work.

Giving all citizens a fixed monthly payment, which does not change as a result of
a change in employment status or income level, guarantees that working always
pays. There will be no perverse opportunity cost from rejoining the labour force and
economic incentives within our economy will be fully aligned.

Argument 3: Boost Employment in Undervalued Sectors

Another argument for UBI is to boost employment within sectors that are tradition-
ally under-rewarded by the free market. Allowing everyone a basic standard of liv-
ing regardless of their job means that individuals will be able to pursue more socially
‘important’ jobs (such as charity work and community care) without sacrificing their
quality of life.

Argument 4: Justice and Equality

Today, the top 10% of earners account for c¢.37% of national income in Europe, ¢.47%
in North America and c.61% in the Middle East. Since 1980, income inequality has
greatly increased across the globe [13], as seen in Figure 2.4 [13, p. 10].

Income inequality can be largely attributed to unequal ownership of capital within an
economy, whether that be physical or intellectual capital. Since the 1990s, productiv-
ity gains driven by technology have been broadly captured by the owners of capital,
as demonstrated by the dramatic reduction in the labour share of income [14], as
seen in Figure 2.5 [14, p. 122].

Arguably, new technological innovations such as Artificial Intelligence will reduce
the labour share of income either further, as many routine-based jobs are automated,
with firms paying creators of the technology instead of their own labour.

UBI has the potential to recoup some of these lost funds, either through taxation
or other schemes, and redistribute them to members of society. As a result, the
impact of technological innovation on inequality will be dampened.

12

Chapter 2. An Overview of UBI

2.2. ARGUMENTS FOR UBI

Share of national income (%)

60% A

un

(@]

xR
1

40%

30% -

20% 1

T T T T T T T

1980 1985 1990 1995 2000 2005 2010 2015

Figure 2.4: Inequality rates over time

—— Advanced economies

India
US-Canada

Russia

== China

Europe

] —— Emerging market and - 36

46 - developing economies (right scale) -35

45- -34

44 L 1 1 1 1 | 1 1 1 I33
1970 75 80 85 90 g5 2000 05 10 14

Figure 2.5: Labour share of national income

13

2.3. ARGUMENTS AGAINST UBI Chapter 2. An Overview of UBI

2.3 Arguments Against UBI

Argument 1: UBI Would Be Too Costly

One of the principle arguments against the implementation of UBI is that it would be
far too costly. If every citizen in the UK above the age of 16 were to receive a fixed
payment of c.£10,000 per year, this would cost a total c.£540bn (see Figure 2.6).

This is far greater than the current welfare budget of c.£217bn discussed earlier

in this chapter. Therefore, this cost would have to be met by an increase in taxes,
reduction in government spending or some other revenue generating venture.

1,600 -

1,400 £1,351bn
£1,216bn
1,200
£1,081bn
= 1,000 4 £945bn
[
= £810bn
2 800 -
o £675bn
=
c 500 4 £540bn
£405bn
400 -
£270bn
Current Welfare
200 4 £135Bn Budget = £217bn
0 4

2,500 5,000 7,500 10000 12500 15000 17500 20,000 22500 25,000

UBI Payment Per Year Per Person (£)

Figure 2.6: Cost of UBI scheme in the UK

Argument 2: Employment Disincentive

The second key argument against UBI is that it would act as a disincentive for in-
dividuals to participate in the labour force. The argument is that if individuals are
allowed a comfortable life without the need for work, people will simply choose this
option. By removing the need to work, the state is simply encouraging idleness.

Argument 3: Untested and Risky

Another argument against the implementation of UBI is that it is an untested idea,
whereas the welfare system is a long-standing institution that, arguably, works. By
implementing UBI on a mass scale, society takes a huge risk.

14

Chapter 2. An Overview of UBI 2.4. THE GROWING NEED FOR UBI

2.4 The Growing Need for UBI

According to a recent study by PwC, about 30% of current jobs in the UK are at
risk of automation by 2030 [15] (see Figure 2.7 [15, p. 10]), with this figure rising
to 45% in the manufacturing industry. The UK is not isolated, this will be a global
trend, with close to 40% of jobs in the USA at high risk of automation.

Many Silicon Valley entrepreneurs, including Elon Musk [1], have suggested that
UBI is going to be necessary in years to come. Bill Gates has even gone as far as
suggesting that a ‘robot tax’ could be implemented to fund such a scheme [16].

Given that technological innovations such as Artificial Intelligence are likely to con-
centrate even more wealth in the hands of the few (only a handful of companies
possess A.L. capabilities), exacerbating inequality across the globe, UBI is becoming
an increasingly popular policy.

In Europe, a 2017 study found that that 68% of 11,000 Europeans would vote for a
basic income referendum if one were immediately held in their country [17]. The
concept has been at the forefront of Politics in the UK in recent months, with the
Shadow Chancellor, John McDonnell, arguing for the widespread implementation of
Universal Basic Income [18]. However, to date, no country has introduced a fully-
deployed UBI scheme in any form.

Potential jobs at high risk of automation
0% 10% 20% 30% 40% 50%

svk
svn
Itu
cze
ita
usa
fra
deu
aut
esp
pol
tur
i
nld
gbr
cyp
bel
dnk
isr
chl
sgp
nor
swe
nzl
jpn
rus
grc
fin
kor

Country

Figure 2.7: Potential rates of job automation by country

15

2.5. NON-CRYPTOCURRENCY UBI EXPERIMENTS Chapter 2. An Overview of UBI

2.5 Non-Cryptocurrency UBI Experiments

There have been many recent examples of experimental UBI schemes that do not
utilise cryptocurrency. A table summarising all of these experiments can be found
in Appendix C. Two of these experiments that are implementing a ‘full’ UBI scheme
(unconditional, significant value cash transfers) will be explored in depth.

Government-Backed: Finland

In 2017 and 2018, Finland’s Social Insurance Institution, Kela, implemented an ex-
perimental UBI scheme [19]. As part of the scheme, 2,000 participants between the
ages of 25 and 58 were selected at random (although they were selected from those
receiving basic unemployment allowance) in December 2016.

The participants are being paid €580 per month for a period of two years (1 Jan-
uary 2017 to 31 December 2018). The payment is paid unconditionally: it is not
means tested and is not reduced by any other supplemental income the participant
may have (in case they find employment). The results of the study are expected
to come out in 2020 and all of the comparisons will be made to a control group of
participants who did not receive a UBI payment.

Privately-Backed: Y Combinator

The Silicon Valley Seed Accelerator, Y Combinator, began experimenting with a
privately-funded UBI scheme in 2017 [20]. As part of the experiment, ¢.3,000 partic-
ipants across two US states have been recruited. Around 1,000 of these participants
will receive US$1,000 per month for a period of three to five years.

Y Combinator will obtain a vast amount of quantitative and qualitative data as part
of the experiment, including details related to how participants use their time and
how the UBI payment affects their children and people in their network.

16

Chapter 2. An Overview of UBI 2.6. CRYPTOCURRENCY UBI SOLUTIONS

2.6 Cryptocurrency UBI Solutions

The use of cryptocurrencies is not new in the UBI space (a summary of all solutions
can be found in Appendix D). The use of a cryptocurrency can allow a flexible, effi-
cient, and cost effective way of implementing UBI. In general, there are a number of
fundamental problems with existing cryptocurrency UBI solutions.

The most fundamental flaw in these systems tends to be a lack of real currency
backing for the token. Given you are distributing tokens at no cost, this inflates the
supply of this token and thus it devalues. In such a system it is hard to incentivise
producers to sell items for your token.

The second fundamental problem that these solutions have is identification. It can
be difficult to ensure that there is a one-to-one mapping between an individual and
each wallet. A number of schemes have been put in place to ensure that individuals
do not set up multiple beneficiary UBI wallets.

Mannabase

Originally called Grantcoin, Mannabase [21] was created in May 2015 and is the
first cryptocurrency to be managed and distributed by a tax-exempt US charity.
Mannabase is the platform that allows users to sign-up and receive the Manna UBI,
as well as acting as a social network allowing users to interact and send tokens to
one another.

Manna is one of the most widely known and used UBI schemes, with over 3,500
holders of either Grantcoin or Manna at the beginning of 2018. As of the beginning
of June 2018, the Manna coin had a market capitalisation of just over US$200,000,
having reached a peak of c.US$2,000,000 at the end of 2017.

Manna basic income is distributed weekly into web-based wallets on the Mannabase
platform and users can receive bonuses for signing up others onto the platform. In
order to be eligible to receive Manna, a user has to go through a sign up process,
entering details such as their address and mobile phone number. The user then has
to enter a unique code sent to the mobile number specified.

There are fundamental problems with this implementation. Firstly, no real financial
backing to the token has led to an extremely small market capitalisation. Secondly,
deflationary economics has played a part and there are not many items that you can
purchase using your Manna UBI tokens.

17

2.7. WORGLCOIN Chapter 2. An Overview of UBI

2.7 Worglcoin

The inspiration behind this project is the Worgl experiment that took place in Aus-
tria between 1932 and 1933. In this experiment, the small town of Worgl in Austria
experimented with implementing its own currency during the midst of the Great De-
pression.

The mayor of Worgl at the time, Michael Unterguggenberger, faced a tough situ-
ation: the city had 1,500 unemployed individuals and a further 200 families had no
money whatsoever. There were a large number of jobs that needed to be done in the
town and an adequate number of labourers to do these jobs.

The problem was that he only had 40,000 schillings in the bank - nowhere near
enough to pay for all the work. This is a situation an economy can regularly find
itself in - plenty of free labour to do the job but not enough liquid currency to ensure
everyone is willing to do the job.

Michael Unterguggenberger decided to create his own currency. Instead of spending
the 40,000 schillings, he decided to deposit the money in a savings account and use
it to back Worgl’s own 40,000 schillings worth of stamp scrip. A stamp needed to
be applied to the currency in order to retain its value (i.e. a negative carry on the
currency, incentivising people to spend), at a rate of 1% each month.

The result of this implementation was to significantly increase the velocity of cur-
rency, more people were put into work, and ultimately all required projects were
completed. Cryptocurrency can be defined in such a way to have incentivisation
mechanisms built-in, unlike traditional fiat currencies.

This experiment has inspired a foundational part of this project. This project has
implemented a government-backed UBI scheme in which holders of the token are
incentivised to spend (have a similar negative carry to that in the Worgl experi-
ment) so that the token has the maximum impact it can on the real economy. It does
this by topping up a user’s balance to a pre-set amount. Holders of the UBI token
lose out if they don’t spend their entire holdings and thus they are incentivised to
spend.

18

Chapter 3

Smart Contract Design

This chapter explores the implementation of WorglCoin using the Ethereum blockchain.
It will cover the logic of the smart contracts that have been developed, the secu-
rity measures that have been introduced and the methodology that has been imple-
mented for cost optimisation.

3.1 An Overview of Ethereum

In 2009, Bitcoin introduced a new type of digital currency, underpinned by a dis-
tributed ledger - the blockchain. In 2013, Ethereum expanded on this concept by
“building a blockchain with a built-in Turing-complete programming language, al-
lowing anyone to write smart contracts and decentralized applications” [22]. In
essence, smart contracts enable users to store and transfer value based on pre-set
conditions written in code.

One of the core elements of Ethereum is the Ethereum Virtual Machine (‘EVM’).
The EVM is essentially a run-time environment for smart contracts on the Ethereum
network. Developers can use a high-level language (e.g. Solidity) to develop pro-
grams which are compiled into EVM byte-code and executed across every node in
the network.

Every single EVM instruction must be paid for in terms of a specific number of units
of ‘gas’. Each unit of gas has a price which is expressed in terms of Gwei (1 Ether
= 1,000,000,000 Gwei). This execution cost is decided by the miners, which can
refuse to process transactions under a certain gas price, and is designed to prevent
Denial-of-Service attacks on the Ethereum network.

The EVM is a stack-based virtual machine with a memory byte-array and key-value

storage. All elements on the memory stack are 32-bytes, and all keys and values in
storage are 32 bytes.

19

3.2. SMART CONTRACT PROGRAMMING Chapter 3. Smart Contract Design

3.2 Smart Contract Programming

All of the Ethereum smart contract code in this project has been written in Solid-
ity [23]. This is the language of choice for most developers of decentralised appli-
cations. There are a number of other choices out there including Vyper [24] (which
promotes security within smart contracts), LLL [25] (a low-level language similar to
Assembly) and Flint [26].

Solidity has a number of similarities with traditional programming languages such
as C, C++ or Javascript. A major difference to the Python programming language is
that variables must be type cast.

As it stands today there are a number of limitations within Solidity that a devel-
oper has to deal with; for example, there is no support for floating point numbers.
However, Solidity is evolving very quickly with each new iteration of the language
released.

In general there are three key guiding principles of programming a smart contract.
Firstly, the contract should be simple so that it can be reviewed and understood eas-
ily by the community. Secondly, the contract should display best-in-class security
practices. Thirdly, the contract should be optimised to consume the least amount of
gas as possible by minimising the number of individual operations being executed
by the EVM.

20

Chapter 3. Smart Contract Design 3.3. FUNCTIONALITY

3.3 Functionality

The smart contract of WorglCoin can be split into four main elements: contract
attributes, modifiers, events, and functions.

Contract Attributes

In a similar manner to typical object-oriented programming languages, contract at-
tributes can be seen as the state of the contract. These attributes can be of simple
type (e.g. an unsigned integer), an array, a structure (which is a self-created object
type) or a mapping (similar to a hash table with a key and corresponding value).

The system underpinning WorglCoin can be ultimately seen as an e-commerce site
with an in-built currency (the UBI coin) distributed to registered users. The smart
contract state includes information on consumers, businesses, orders and items.

For consumers, there is information on whether the account has been activated
(whether the Ethereum address has performed identification measures to be an ap-
proved consumer), the UBI token balance (just a simple unsigned integer) and all
orders the consumer has made (an array of unsigned integers corresponding to order
IDs).

struct Consumer {
bool isSet;
address consumerAddress;
uint tokenBalance;
uint[] allOrders;

}

Figure 3.1: The consumer structure used in the WorglCoin smart contract.

For businesses there is information on whether the business address has been acti-
vated, the UBI token balance, all items supplied by the business (an array of unsigned
integers corresponding to item IDs), whether a complaint has been lodged against
the company, the number of outstanding complaints, all orders made to the company
and the name of the company.

21

3.3. FUNCTIONALITY Chapter 3. Smart Contract Design

struct Business {
bool isSet;
address businessAddress;
uint tokenBalance;
uint[] itemsSupplied;
bool complaintAgainst;
uint noOfComplaints;
uint[] allOrders;
string name;

Figure 3.2: The business structure used in the WorglCoin smart contract

Within the contract there are also a number of attributes that make it easier to access
the details of consumers, businesses, items and orders. This is typically achieved by
having a mapping of an address / unsigned integer to the structure and then an
array of addresses / unsigned integers that can be iterated through.

mapping(address => Consumer) public consumerDetails;
mapping(address => Business) public businessDetails;
mapping(uint => Item) public allltems;

mapping(uint => Order) public allOrders;

address[] consumerAddresses;
address[] businessAddresses;
uint[] itemIDs;
uint[] orderIDs;

Figure 3.3: The typical structure used to keep track of key elements

It is also key to remember that by using a public, permissionless Blockchain such
as Ethereum, all attributes are accessible to the outside world (even if the ‘private’
keyword is used). Thus, the idea of privacy within an Ethereum smart contract is
redundant and therefore this is a key consideration when it comes to identification
and personal details.

Modifiers

In Solidity, modifiers can be used to alter function behaviour and enforce their cor-
rect use. For example, modifiers can be used to ensure that a function will only be
executed by the contract owner, such as withdrawing funds or making changes to
key state variables.

Within the smart contract there are modifiers to check whether the function is being
executed by the contract owner (e.g. the government backing the coin), whether a

22

Chapter 3. Smart Contract Design 3.3. FUNCTIONALITY

registered consumer is executing a function or whether a business is executing the
function. This ensures that only the correct registered user can perform key actions
such as ordering items and receiving Ether in exchange for the UBI coin.

Furthermore, functions can have three further modifiers pre-defined within Solid-
ity - pure, view and payable. A function marked with the keyword ‘pure’ means that
the function is not allowed to read or write to internal storage (modify the contract
attributes). A function marked with the keyword ‘view’ means that the function is
allowed to read, but not write to, internal storage.

Importantly, a function which is either ‘pure’ or ‘view’ can be called through web3
(the Javascript library for interacting with smart contracts) without needing a trans-
action. Therefore, these function calls are completely free and instantaneous.

A function marked with the keyword ‘payable’ allows Ether to be passed into the
contract as part of the function call. Without this modifier, the transaction would be
rejected.

modifier isOwner() { require(msg.sender == master); _; 1}
modifier isConsumer() { require(consumerDetails[msg.sender].isSet); _;
modifier isBusiness() { require(businessDetails[msg.sender].isSet); _; }

Figure 3.4: Modifiers ensure functions are being executed as intended

Events

In Ethereum, events allow smart contracts to make interactions with the outside
world. When a particular transaction is mined on the Ethereum network, smart con-
tracts can emit events (through the transaction logs) which the front-end application
can then process and respond to.

In the WorglCoin application, the front-end needs to update when a new order is
made, a new consumer or business registers and a variety of other events occur. The
front-end will listen for particular events which are triggered within certain functions
of the smart contract.

23

3.3. FUNCTIONALITY Chapter 3. Smart Contract Design

event
event
event
event

event
event

event
event
event
event

ConsumerAdded (address consumerAddress) ;
BusinessAdded(address businessAddress);

ItemAdded (uint itemID);

OrderAdded(uint orderID, address businessAddress);

TokenDistribution();
TopUp () ;

ConsumerChange (address consumerAddress) ;
BusinessChange (address businessAddress) ;

ItemChange (uint itemID);

OrderChange (uint orderID, address businessAddress);

Figure 3.5: Events trigger updates to the user interface

Functions

The functions with the smart contract execute the main logic of the UBI system. In
Solidity there are four distinct types of function - public, external, internal and pri-

vate.

Public functions can be executed by anybody, whereas external functions can only
be accessed externally and not by the contract itself. Internal functions (marked
with the keyword ‘internal’) can only be called inside the current contract and all
contracts derived from it. Private functions can only be accessed from within the
contract.

24

Chapter 3. Smart Contract Design 3.4. SECURITY

3.4 Security

Smart contract security is a key area of research today given the large number of
smart contract ‘hacks’ that have taken place. The most famous of these took place
in 2016 when a hacker was able to exploit the DAO smart contract to drain c¢.3.6m
Ether (worth approximately US$70m at the time) in a few hours [27]. This section
will cover the main security exploits [28] and how Wo6rglCoin has been designed to
mitigate against these risks.

Re-Entrancy

In order to understand this vulnerability it is first important to understand what is
meant by a ‘fallback function’. In Solidity, a contract may have exactly one unnamed
function which has no arguments and no return values. This function is executed
in one of three circumstances: 1) if no function in the contract matches the name
specified in the contract call, 2) if no data is supplied, or 3) if the contract receives
plain Ether without any corresponding data.

This particular attack occurs when a smart contract is sending Ether to an unknown
address. By carefully constructing a smart contract, the malicious attacker can in-
voke code in their fallback function when it receives funds from your smart contract.
This malicious code then executes functions of your smart contract before the com-
pletion of the original code execution.

In the WorglCoin smart contract, Ether is sent to the address of a business when
they have received a number of UBI tokens. In order to prevent a re-entrancy attack,
the in-built ‘transfer’ function is used which only sends 2,300 gas. This is not enough
gas for the destination address to call another contract.

The second precautionary measure that has been taken is to ensure that all state
variable changes occur before transferring Ether to the destination address. This
ensures that any re-entrancy attack could not take advantage of partial execution of
function logic.

Arithmetic Over/Under Flows

As discussed earlier in this chapter, the EVM specifies fixed-size data types for inte-
gers. Classic computer programming arithmetic over- and under-flows can lead to
many problems in function execution if user input is not sanitised correctly or the
final state of the output is not checked thoroughly.

In order to prevent such an attack, the ‘SafeMath’ library [29], created by Open-
Zeppelin, has been used. This library replaces the traditional arithmetic operations
with ‘safe’ math operations which validate the output is as expected.

25

3.4. SECURITY Chapter 3. Smart Contract Design

function resetTokenBalance() public isOwner payable {

// Reset all consumer balances
for(uint i = 0; i<noOfConsumers; i++) {

consumerDetails [consumerAddresses[i]] .tokenBalance = topUpLevel;
}
// Pay out all funds to business
for (uint j = 0; j<noOfBusinesses; j++) {
businessDetails[businessAddresses[j]].tokenBalance = 0;

businessAddresses[j] .transfer
(mul (businessDetails [businessAddresses[j]].tokenBalance,
tokenValue)) ;

emit TokenDistribution();

}

Figure 3.6: Measures taken to prevent a ‘re-entrancy’ attack

function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return O;

}

c =a * b;
assert(c / a == b);
return c;

3

Figure 3.7: OpenZeppelin’s safe arithmetic operations library

Unexpected Ether

This vulnerability occurs when a developer assumes that Ether sent to a contract
either executes the fallback function or another payable function. A developer may
then have requirements in function that check ‘this.balance’ to verify whether cer-
tain logic can execute. However, if Ether has been forcibly sent to a smart contract,
a malicious attacker can change the intended logic execution.

Given that the WorglCoin smart contract allows the owner to send Ether to the
contract, the smart contract implements a state variable ‘balance’ which is changed
only when the intended payable function is executed. This variable will never be
manipulated by Ether forcibly sent to the contract and therefore all checks utilising
this variable can be deemed reliable.

26

Chapter 3. Smart Contract Design 3.4. SECURITY

Delegatecall

In order to understand this vulnerability two opcodes implemented in the EVM need
to be understood: CALL (0xf1) and DELEGATECALL (0xf4). External call messages
are handled by the EVM’s CALL operation where the context of the call switches to
the external contract. The DELEGATECALL opcode is identical in execution except
that the context remains with the calling contract (i.e. the msg.sender is kept as the
caller).

Given that this vulnerability typically arises in the context of ‘libraries’ within Ethereum,
the Worglcoin smart contract does not require any mitigations against this vulnera-
bility.

Default Visibilities

As discussed earlier, functions can have several different types - public, external,
internal and private. If no type is specified then Solidity defaults to ‘public’. This
particular vulnerability occurs when developers allow functions to default to public
that should in fact only be used in the current contract.

Recent versions of the Solidity Compiler will actually give warnings about functions
without an explicit type defaulting to public. Furthermore, it is always safe practice
to explicitly type the functions outlined in your contract.

Denial Of Service (DOS)

In a similar manner to Denial of Service attacks on web applications, smart contracts
can be vulnerable to such an attack. A malicious user may be able to leave a contract
inoperable for a small period of time or permanently. Typically this vulnerability can
occur if a contract interacts with an externally controlled state variable or an outside
data source (such as an Oracle).

There are many different ways to prevent these kind of attacks (given they are very
broad). Given that this smart contract loops through arrays of consumers and busi-
nesses signed up to the site, in theory a malicious user could register a vast number
of users and make this looping very expensive.

Entropy Illusion

There is no randomness within Ethereum and thus using any type of random number
generation is a common source of problems. Many developers in the past have used
block variables (for example the timestamp of a block) to introduce some concept of
randomness into their system. However, these variables are, in essence, controlled
by the miner and are therefore not random.

27

3.4. SECURITY Chapter 3. Smart Contract Design

A common solution to this problem is to use an oracle service (a data provider in-
termediary that brings off-chain data on-chain) to provide random numbers in your
application. Given that the smart contract does not require random number genera-
tion, this vulnerability is not relevant.

Race Conditions / Front Running

This vulnerability takes advantage of the fact that in the Ethereum network trans-
actions are pooled together inside ‘blocks’. Miners choose which transactions (those
with the highest gas limit) get included in the mined block. A malicious attacker can
watch these transactions, see which ones are not mined and attempt to front-run
these transactions by executing their own with a higher gas price.

There are no front-running vulnerabilities in this smart contract given there is no
‘hidden information’ revealed that users can take advantage of. A number of pre-
ventative measures exist but there is no definitive way to protect against a malicious
miner.

External Contract Referencing

Developers are able to explicitly reference and execute functions on contracts already
deployed on the Ethereum mainnet. A problem can occur if the contract address be-
ing executed contains malicious code or has unintended logic execution.

The simplest way to prevent this is for the developer to hardcode the contract ad-
dress in their smart contract and independently verify the code to be executed. In
this smart contract no external contract calls are made and therefore no preventative
measures have been taken.

Unchecked CALL Return Values

This vulnerability occurs when a developer does not check the boolean result of their
‘call()’ or ‘send()’ functions and assumes in their function logic that the transaction
has succeeded.

In order to prevent such a vulnerability, this smart contract utilises the ‘transfer()’
method which will revert if the external transaction reverts. If ‘call()’ or ‘send()’
methods are being used than a simple ‘require’ statement can be used to check the
boolean return value.

28

Chapter 3. Smart Contract Design 3.4. SECURITY

Uninitialised Storage Pointers

This vulnerability occurs when uninitialised local storage variables accidentally point
to other storage variables in the contract. In essence this is similar to an overflow
problem experienced in traditional computing.

In order to prevent such a vulnerability the developer should explicitly declare whether
the variable is memory or storage when dealing with complex types.

Block Timestamp Manipulation

Typically to get access to the date or time in a smart contract a developer will use the
timestamp of the block that the transaction has been mined in (using the function
‘now’ in the smart contract). However, the vulnerability exists as miners are able
to change the timestamp of a block and gain advantageous execution of the smart
contract logic in some way.

In order to prevent such an attack it is recommended to use either the block number
(which will always be monotonically increasing) or take an average of block times-
tamps. In this smart contract, no concept of time is used as the smart contract owner
distributes new funds when they would like, not based on any pre-determined timing
condition.

29

3.5. OPTIMISATION Chapter 3. Smart Contract Design

3.5 Optimisation

When building a system based on the Ethereum network there are two main costs to
consider. The first is the cost of initially deploying the contract on the network. The
second is the ongoing gas cost associated with executing the functionality of your
contract.

Initial Deployment

Initialising and deploying your smart contract is the most expensive part of the sys-
tem. Part of the reason for this is the fact that the opcode ‘SSTORE’ is used frequently
to initialise the storage for contract attributes. For the Worglcoin smart contract, the
initial creation and deployment costs approximately US$183.

In terms of optimising the initial deployment of the smart contract, the Solidity
compiler makes a number of initial optimisations. For example, all variable names
and comments are removed from the code prior to deployment.

Storage is the most expensive component of Ethereum smart contracts. One way
to optimise storage within a smart contract is to employ a technique called ‘packing’.
If certain variable types are put together in a structure, the values will be stored
consecutively in the same 32-byte storage word.

Function Execution

Given that the ongoing cost to the users of the Worglcoin system will be function
execution (particular focus is placed on consumers who will regularly be buying
items), each and every function needs to be optimised to consume as little gas as
possible.

The first optimisation technique that can be used is the ordering of logical com-
parisons. As with most other programming languages, the first statement will be
executed before the second. Therefore, the more expensive computation should be
placed second in the comparison as there is a chance it may not be executed.

The second optimisation technique that can be employed is to minimise input and
output operations (less reads and writes to the storage variables). This is particu-
larly important when it comes to expensive loop operations in a smart contract. By
declaring a local variable that is the focus of a loop (rather than the storage variable),
there will be only one read and one write operation.

30

Chapter 3. Smart Contract Design 3.5. OPTIMISATION

The third optimisation technique is to use as small data types as possible. For ex-
ample, if you know your ‘bytes’ type will be a certain length, it will be significantly
cheaper to use ‘bytes1’ or ‘bytes32’ compared to ‘bytes’ in a smart contract.

The final optimisation technique that can be used is the correct use of the ‘mem-
ory’ storage variable. Memory variables are temporary variables and exist only in
the scope of the function call. Given that they require no long-term storage, memory
variables are fairly cheap to use. This is particularly useful in this smart contract
when new consumers, businesses, orders and items are created.

Gas Price (Gwei) 3

Gas Price (Ether) 0.000000003

USD Per Ether 228.12

Gas Price (USD) 0.00000068436

Function Gas Units Cost Beared By Cost (Gwei) Cost (Ether) Cost (USD)
Contract Creation + Deployment 266,666,667 Government 800,000,000 0.80 182.50
addBusiness 159,465 Government 478,395 0.00 0.11
addConsumerHash 44,755 Government 134,265 0.00 0.03
buyltem 189,970 Consumer 569,210 0.00 0.13
changeOwner 28,882 Government 86,646 0.00 0.02
changeTokenValue 28,176 Government 84,528 0.00 0.02
consumerSignUp 3,142,076 Consumer 9,426,228 0.01 2.15
makeComplaint 67,351 Consumer 202,053 0.00 0.05
markOrderAsSent 66,824 Business 200,472 0.00 0.05
changeTokenBalance 28,270 Government 84,810 0.00 0.02
resetComplaint 28,146 Consumer 84,438 0.00 0.02
resetTokenBalance 31,139 Government 93,417 0.00 0.02
sellltem 291,114 Business 873,342 0.00 0.20
topUpContract 43,181 Government 129,543 0.00 0.03

Figure 3.8: Gas costs of the Worglcoin smart contract

31

3.6. TESTING Chapter 3. Smart Contract Design

3.6 Testing

In order to ensure the system of smart contracts is robust and performs as expected,
an aggregated unit test has been created using a Javascript-based testing framework
within Truffle (based on Mocha). Within this framework, a mixture of black-box
testing (simulating interaction with the front-end application) and white-box testing
(to thoroughly test the inner-workings of the contract) has been used. The results of
these unit tests can be found in Figure 3.9.

In terms of code coverage, a tool entitled ‘Solidity coverage’ [30] has been used. This
tool reports generic code coverage metrics including statement coverage, branch cov-
erage, function coverage and line coverage. As seen in Figure 3.10, code coverage is
close to 100% for statements, over 90% for branches and close to 100% for functions.

This testing framework demonstrates that there are no low-level generic errors (gen-
erally caught by initial deployment of the smart contract). Furthermore, given that
several of the unit tests concentrate on the interaction between the smart contract
and the front-end, there are no high-level, functional errors, with the smart contract
meeting all the needs of both consumers and businesses.

dyn3145-144:Worgl-Coin MatthewMorrison$ truffle test
Using network 'development'.

Compiling ./contracts/Verifier.sol...
Compiling ./contracts/WorglCoin.sol...

Contract: WorglCoin
(68ms)

(73ms)
(52ms)

(50ms)

(50ms)
(52ms)
(57ms)

(52ms)
(57ms)

Figure 3.9: Smart contract unit testing

32

Chapter 3. Smart Contract Design 3.6. TESTING

all files / contracts/ WorglCoin.sol

99.2% Statements 1247125

92% Branches 46/50 100% Functions 3e/30 99.3% Lines 141/142

O~NOYWU A WN R

WWWWWWRNNNNNNRNNNNRRRRBRRB B B B @2
OB WNRPROOVWONOUWBWNROSOUONOUDWNR® O

pragma solidity ~0.4.23;

import "./Verifier.sol";

contract WorglCoin {

/

+ok /

/¥ickrkkk CONTRACT ATTRIBUTES sekskoktcior/

/

struct Consumer {

}

bool isSet;

address consumerAddress;
uint tokenBalance;
uint[] allOrders;

struct Business {

}

bool isSet;

address businessAddress;
uint tokenBalance;
uint[] itemsSupplied;
bool complaintAgainst;
uint noOfComplaints;
uint[] allOrders;

string name;

struct Order {

uint orderID;

uint itemID;

address customerAddress;
uint quantityOrdered;
bool sent;

uint delivery_location;

Figure 3.10

+ok /

: Smart contract code coverage

33

Chapter 4

Identification

This chapter explores one of the major difficulties in implementing a cryptocurrency
UBI system: unique identification of citizens. An overview of solutions in existing
cryptocurrency UBI schemes and their flaws is presented. Furthermore, the use of
zero-knowledge proofs in the Worglcoin UBI system is explained, as well as the
mathematics behind their implementation.

4.1 The Identification Problem

A UBI system cannot be susceptible to Sybil attacks. A Sybil attack is where malicious
users create fraudulent accounts in order to subvert and impede the functionality of
the system. The UBI system implemented in this project aims to distribute tokens to
unique individuals, therefore a robust system of identification is required.

All government entities worldwide have a significant volume of pre-existing data
on citizens. For example, in the UK the government has our National Insurance
number, our permanent residential address, age, and much more. Typically when a
citizen is signing up for a new government service they will be required to enter their
information and this will be verified against the government’s records. For added se-
curity, the government typically sends a unique code to the individual’s permanent
residential address.

The UBI system presented in this project allows a user to sign up using these tra-
ditional data points that the government holds. However, there is one fundamental
problem when using a public, permissionless blockchain such as Ethereum: all trans-
actions and corresponding function parameters are public. Therefore, any malicious
party monitoring the network could be privy to all personal data disclosed during
the sign up process.

34

Chapter 4. Identification 4.2. EXISTING SOLUTIONS

4.2 Existing Solutions

There are a number of solutions that have been utilised by existing cryptocurrency
UBI projects. These existing solutions have several advantages and disadvantages
which will be explored below.

Mobile Phone Identification

Several cryptocurrency UBI schemes, including Mannabase, use SMS-based authen-
tication to ensure that fraud is not committed on their site. When a consumer signs
up for an account on Mannabase, they are required to enter their mobile phone
number, after which they will receive an SMS message with a code for verification
purposes.

However, the security of SMS-based verification has been questioned in recent years.
In July 2017 the National Institute for Standards and Technology in the US advised
abandoning SMS-based two-factor authentication given the risk of interception [31].
This is one of the reasons that Google now uses an application for two-factor authen-
tication rather than SMS.

As well as being a security risk, many individuals worldwide have multiple mo-
bile phones (typically for leisure and work purposes). This means that Mannabase
could potentially face a single individual with multiple mobile devices signing up for
multiple accounts, thus undermining the distribution of their token.

Passport Verification

Since 2008, more than 60 countries have issued biometric passports containing a
RFID chip, which can be easily read by certain devices, including smartphones. The
‘UBIC’ project, for example, uses the unique digital signature of an E-Passport to
verify the identity of an individual. This unique digital signature is then crypto-
graphically linked to a UBIC wallet address.

There have been many public displays of security vulnerabilities in E-Passport ar-
chitecture, including the ability to copy all the data to a smartcard using a standard
contactless card interface and a simple file transfer tool [32]. Furthermore, it is fairly
trivial to use a stolen passport to scan and subscribe to these services.

Social Profile Vetting

Another method utilised for individual verification is to ask users to submit a social
profile (e.g. Facebook) at the time of sign-up. This is a technique employed by the
‘BIG’ foundation [33] where a user will submit their social profile and it will be vet-
ted by an individual at the foundation.

35

4.2. EXISTING SOLUTIONS Chapter 4. Identification

As well as not being particularly scalable given the human verification required,
it is common knowledge that social media companies host many fake and duplicate
accounts in their systems. At the end of 2017, Facebook admitted in its earnings call
that around six to ten percent of accounts on the site are duplicate and two to three
percent are fake [34]. This amounts to as many as 270 million accounts on the site
that are duplicate or fraudulent. This is clearly a problem for systems that rely on
verification through social media profiles.

Biometrics

Several UBI schemes have proposed using biometrics (e.g. DNA) to uniquely identify
individuals. However, these solutions are intrusive and open to misuse (e.g. getting
hold of someone else’s DNA and using it for sign-up). Furthermore, given that the
technology is at a very early stage, most UBI schemes have noted that these systems
will not be possible in the near-future.

User Recommendations

Another method in place today at ‘SwiftDemand’ is the use of ‘identity providers’
who are responsible for validating the identity of new individuals and signing them
up to the service. There are clear limitations and vulnerabilities of such a system,
including how vulnerable the system is to a handful of rogue actors undermining the
identification process.

36

Chapter 4. Identification 4.3. INTERACTIVE ZERO-KNOWLEDGE PROOFS

4.3 Interactive Zero-Knowledge Proofs

An interactive zero-knowledge proof is a cryptographic construct that allows one
party (‘Peggy’) to prove to another party (‘Victor’) that they know a public value ¥,
without revealing any private information that leads them to knowing ‘x’. For exam-
ple, ‘Peggy’ could prove to ‘Victor’ that they have all of the inputs required to create
a public SHA256 hash value, without disclosing any of the inputs.

A zero-knowledge proof must satisfy three conditions: 1) completeness, 2) sound-
ness, and 3) zero-knowledge. Completeness dictates that if a statement is true then
the verifier will be convinced of this fact by an honest prover. Soundness means that
an honest verifier cannot be tricked by a cheating prover. Zero-knowledge means
that no information is leaked to the verifier as a result of verifying the statement to
be true.

Zero-knowledge proofs are examples of ‘interactive proof systems’ in which provers
and verifiers can exchange challenges and responses. Interactive proof systems are
probabilistic in nature but the probabilities can be made arbitrarily close to 100%.

A very good practical demonstration of an interactive zero-knowledge proof is the
Ali Baba cave’ [35]. There is one entrance to this cave with two routes, A and B.

The two routes of the cave are separated by a door that can only be unlocked with a
secret key, S.

Route A

Entrance/ Door (Unlocked
Exit with Secret Key)

Route B

Figure 4.1: The Ali Baba cave

37

4.3. INTERACTIVE ZERO-KNOWLEDGE PROOEFS Chapter 4. Identification

In this example, Peggy (the ‘prover’) has access to the secret key S and wants to
prove this to Victor, the ‘verifier’. Peggy wants to prove to Victor that she knows the
secret key, without actually revealing the secret key.

In order to do this, Peggy enters the cave and, with random probability and un-
known to Victor, chooses either path A or path B. Victor then stands outside the
cave and shouts the name of the path that he wants Peggy to come down.

If Peggy knows the secret key then this is an easy task. She simply opens the door
and exits the path as chosen by Victor. However, if she does not have the secret key,
then the probability is only 50% that Peggy will exit by the right path. By simply re-
peating this experiment many times, the probability shifts to 25%, 12.5% etc. until
Victor can be almost certain Peggy knows the secret key.

38

Chapter 4. Identification =~ 4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

4.4 Non-Interactive Zero-Knowledge Proofs

A non-interactive zero-knowledge proof does not require any interaction between
the ‘prover’ and ‘verifier. An article published in 2012 by Bitansky, Canetti, Chiesa
and Tromer [36] introduced the acronym zk-SNARK for a zero-knowledge succinct
non-interactive argument:

e Succinct: the messages have a relatively small size, especially compared to the
complexity of the computation required.

e Non-interactive: there is no interaction between the prover and the verifier.

e ARguments: the verifier is only protected against computationally limited
providers.

e Knowledge: it is not possible for the prover to construct a proof without know-
ing a witness.

Quadratic Arithmetic Program

The type of problem that a zk-SNARK can be applied to is called a ‘quadratic arith-
metic program’ (‘QAP’) [37]. In the following example a prover will want to demon-
strate that they know the solution to the quadratic equation z? + 2z + 3 = 27. The
solution that our prover will have to know is that + = 4 or x = —6.

Stage 1: Define Problem in High-Level Language. The problem is first described
in terms of a high-level language supporting basic arithmetic:

def quadratic(x):

/* x is a private variable, in this case the solution to the quadratic
equation */
y == X*%2
return y + 2 * x + 3

39

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Stage 2: Flattening. To begin the process of converting this high-level language
code into a QAP, the code needs to be processed through a stage called ‘flattening’.
This is where the code outlined above is converted into statements of the form z = y
or x = y (operation) z, where operation can be an arithmetic operation of the kind
+, —, *, or /. This is sometimes referred to as creating a ‘circuit’ as each line of code
as a result of our flattening can be likened to a pass through one kind of logic gate.

Flattening our above high-level language problem:

y =X %X

sym_1 2 * x
sym_2 =y + sym_1
“out = sym_2 + 3

Stage 3: Convert Flattened Code to R1CS. After flattening this problem, the circuit
is then converted into a rank-1 constraint system (‘R1CS’). An R1CS is a sequence of
groups of three vectors (a, b and ¢), with a solution vector s that solves the following:

sca*xs-b—s-c=0 4.1)

An R1CS constraint (these three vectors a, b and ¢) is actually created for every ‘logic
gate’ step (every line of the ‘flattened’ code). Furthermore, there are standard ways
of converting a ‘logic gate’ step into this sequence of three vectors, depending on the
arithmetic operation being applied.

The final R1CS for the problem will be have four sets of three vectors, with each
vector having a height equal to six (the number of variables in the problem). A de-
tailed R1CS conversion from the flattened code can be seen in Figure 4.2.

The witness is then simply the solution vector (i.e. vector ‘S’) that solves each con-
straint in the system. In this case, the witness would simply be |1, 3, 18,9, 6, 15].

40

Chapter 4. Identification =~ 4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

A || B || c
=x*
FKarigbles Represented FPegror § FPectord Yegror § Eector B Yector § FBegror C
~one 1 0 1 0 1 0
X 3 1 3 1 3 0
~out 18 0 18 0 18 0
¥ 9 0 9 0 9 1
sym | 6 0 6 0 6 0
sym 2 15 0 15 0 15 0

Dot Product—> | 3 |« 3 | - 9 = []

FYarighles Represented Fecior § Yegtor 4 Yecror § Fecror B Yecror § Yecror C
~0ne I 1 & 1 0 1 0
X 1 3 0 3 1 3 0
~out ¥ 18 0 18 0 18 0
¥ 9 0 9 0 9 0
sym | 0 6 0 6 1
sym 2 15 0 15 0 15 0

Dot Product — I 2 | * I 3 | - | 6 I = II'

=y+
Earighles Represented Fecior 5 Yector 4 Yecror 5 Kecror B Yecror § Fecror C
~one 1 0 1 1 1 0
X 3 0 3 0 3 0
~out 18 0 18 0 18 0
y 9 1 9 0 9 0
sym | 1 6 0 6 0
sym 2 15 0 15 0 15 1

Dot Product—> [15 |+ 1 | - 15] = []

~oyt = +
Farigbles Represented Fecior § Fecor 4 Yector § Fector B Yector § Yector C
~0ne 1 B 1 1 1 0
X 3 0 3 0 3 0
~out 18 0 18 0 18 1
y 9 0 9 0 9 0
sym | 0 6 0 6 0
sym 2 15 1 15 0 15 0

Dot Product —> 18 |« 1 | - 18 - [

Figure 4.2: An R1CS representation of the flattened code

41

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Stage 4: Convert R1CS into QAP Form. We then need to convert this R1CS into
QAP form, by using polynomials instead of dot products. By using Lagrange inter-
polation, we go from n sets of three vectors, each with a height equal to the number
of variables (h) to h sets of three degree-3 polynomials. Evaluating the polynomials
at each x-coordinate then represents one of the n constraints in the system.

Lagrange interpolation is simply a method to find a polynomial that passes through
all specified (x,y) coordinate pairs. In order to do this, the first value of every a vec-
tor is taken (in this example it would be [0, 2, 0, 3]), converted to coordinates where
the x-coordinate represents the position and the y-coordinate represents the value
(so in this case it would be [(1,0), (2, 2),(3,0),(4,3)]) and then use Lagrange inter-
polation to find the polynomial going through these points.

This process is then repeated for the second, third, fourth, fifth and sixth elements
of every a vector, and then repeated again for the b and ¢ vectors. As a result, we
end up with six sets of degree-3 polynomials for each vector. A detailed overview of
the transformation to QAP can be seen in Figures 4.3 to 4.6.

The reason behind transforming the problem into QAP is that we can now check
all of the constraints at the same time by doing the dot product check on the poly-
nomials, as seen in Figure 4.7.

If the resulting polynomial is zero at every x-coordinate, that means all of the checks
pass. In this system, if any fields in any of the R1CS constraints does not hold (i.e.
a logic gate step does not hold), then the resulting polynomial will not evaluate to
zero at every x-coordinate.

As can be seen in Figure 4.8, the resulting polynomial is equal to zero at every
x-coordinate relevant to each logic gate step. Therefore, the prover has correctly
generated each line of the problem and there this is a valid proof.

To speed up the process, instead of having to evaluate the new polynomial at ev-
ery x-coordinate, we simply divide ¢ by another polynomial (let’s call it Z) and check
that there is no remainder once you make this division.

The polynomial 7 is defined as a polynomial that is equal to O at all relevant points
for our logic gate (i.e. © = 1 to x = 4). Therefore, any polynomial that is equal to
0 at all of its points has to be some multiple of our polynomial Z. Therefore, if we
find no remainder when making this division, we can be sure that our polynomial ¢
is equal to O for all relevant x-coordinates.

42

Chapter 4. Identification =~ 4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

Step 1: Take the values from each vector

Vector A, Position 1 0 2 0 3
Vector A, Position 2 1 0 0 0
Vector A, Position 3 0 0 0 0
Vector A, Position 4 0 0 1 0
Vector A, Position 5 0 0 1 0
Vector A, Position 6 0 0 0 1
Vector B, Position 1 0 0 1 1
Vector B, Position 2 1 1 0 0
Vector B, Position 3 0 0 0 0
Vector B, Position 4 0 0 0 0
Vector B, Position 5 0 0 0 0
Vector B, Position 6 0 0 0 0
Vector C, Position 1 0 0 0 0
Vector C, Position 2 0 0 0 0
Vector C, Position 3 0 0 0 1
Vector C, Position 4 1 0 0 0
Vector C, Position 5 0 1 0 0
Vector C, Position 6 0 0 1 0

Figure 4.3: Step 1 of the QAP transformation

43

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Step 2: Convert these values to coordinates

Vector A, Position 1 (1,0) (2,2) (3,0) (4,3)
Vector A, Position 2 (1,1) (2,0) (3,0) (4,0)
Vector A, Position 3 (1,0) (2,0) (3,0) (4,0)
Vector A, Position 4 (1,0) (2,0) (3,1) (4,0)
Vector A, Position 5 (1,0) (2,0) (3,1) (4,0)
Vector A, Position 6 (1,0) (2,0) (3,0) (4,1)
Vector B, Position 1 (1,0) (2,0) (3,1) (4,1)
Vector B, Position 2 (1,1) (2,1) (3,0) (4,0)
Vector B, Position 3 (1,0) (2,0) (3,0) (4,0)
Vector B, Position 4 (1,0) (2,0) (3,0) (4,0)
Vector B, Position 5 (1,0) (2,0) (3,0) (4,0)
Vector B, Position 6 (1,0) (2,0) (3,0) (4,0)
Vector C, Position 1 (1,0) (2,0) (3,0) (4,0)
Vector C, Position 2 (1,0) (2,0) (3,0) (4,0)
Vector C, Position 3 (1,0) (2,0) (3,0) (4,1)
Vector C, Position 4 (1,1) (2,0) (3,0) (4,0)
Vector C, Position 5 (1,0) (2,1) (3,0) (4,0)
Vector C, Position 6 (1,0) (2,0) (3,1) (4,0)

Figure 4.4: Step 2 of the QAP transformation

44

Chapter 4. Identification

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOEFS

Step 3: Find degree-3 polynomial solutions

Vector A Constant xTerm X2 Term x3 Term
Position 1 -15.0000 24,5000 -11.0000 1.5000
Position 2 4.0000 -4,3333 1.5000 -0.1667
Position 3 0.0000 0.0000 0.0000 0.0000
Position 4 4.0000 -7.0000 3.5000 -0.5000
Position 5 4.0000 -7.0000 3.5000 -0.5000
Position 6 -1.0000 1.8333 -1.0000 0.1667
Vector B Constant x Term X2 Term x3 Term
Position 1 3.0000 -5.1667 2.5000 -0.3333
Position 2 -2.0000 5.1667 -2.5000 0.3333
Position 3 0.0000 0.0000 0.0000 0.0000
Position 4 0.0000 0.0000 0.0000 0.0000
Position 5 0.0000 0.0000 0.0000 0.0000
Position 6 0.0000 0.0000 0.0000 0.0000
Vector C Constant xTerm X2 Term x3 Term
Position 1 0.0000 0.0000 0.0000 0.0000
Position 2 0.0000 0.0000 0.0000 0.0000
Position 3 -1.0000 1.8333 -1.0000 0.1667
Position 4 4.0000 -4,3333 1.5000 -0.1667
Position 5 -6.0000 9.5000 -4.0000 0.5000
Position 6 4.0000 -7.0000 3.5000 -0.5000

Figure 4.5: Step 3 of the QAP transformation

45

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Step 4: Evaluate these polynomials to get original vectors

X=1 A B [9 X=2 A B [9
0 0 0 2 0 0
1 1 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
X=3 A B [9 X=4 A B [9
0 1 0 3 1 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 1 0 0
Figure 4.6: Step 4 of the QAP transformation
A | B | c |
Variables Represented VectorS Polynomial Vector A VectorS Polynomial Vector B VectorS Polynomial Vector C
~one 1 As(x) 1 B1(x) 1 Ci(x)
x 3 Ay(x) 3 B,(x) 3 G(x)
~out 18 As(x) 18 Bs(x) 18 G(x)
Y 9 Aalx) 9 Ba(x) 9 Calx)
sym_1 6 As(x) 6 Bs(x) 6 Gs(x)
sym_2 15 As(x) 15 Be(x) 15 GCs(x)
Dot Product —> Alx) | * | B(x) | - | Clx) =

Figure 4.7: The QAP problem in terms of polynomials

46

Chapter 4. Identification =~ 4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

A Constant x Term x2Term x3 Term
Vector5 Constant xTerm x2Term x3Term A-s 42.0000 -66.0000 31.0000 -4.0000
1 -15.0000 | 24.5000 | -11.0000 | 1.5000 B-s -3.0000 10.3333 -5.0000 0.6667
3 4.0000 -4.3333 1.5000 -0.1667 C-s 42.0000 -54.0000 24.0000 -3.0000
18 0.0000 0.0000 0.0000 0.0000
4.0000 -7.0000 3.5000 -0.5000 x Term x2Term x3 Term x4 Term x5 Term x6 Term
6 4.0000 -7.0000 3.5000 -0.5000 t=A-s*B-s-C-s | -168.0000 | 686.0000 | -1009.0001 | 693.3333 | -240.3333 40.6666 -2.6667
15 -1.0000 1.8333 -1.0000 0.1667
x=1 0
Constant xTerm x2Term x3Term =2 0
Result 42.0000 -66.0000 | 31.0000 -4.0000 x=3 0
x=4 0
B
Vector§ Constant xTerm x2Term x3Term z 24.0000 -50.0000 35.0000 -10.0000 1.0000 0.0000 0.0000
Bl(x) 3.0000 5.1667 2.5000 0.3333 h=t/Z -7.0000 14.0000 -2.6667

B2 | 20000 | 51667 | 25000 | 03333
B3 | o.0000 | o0.0000 | o0oo00 | 00000
Bax) | 0.0000 | 00000 | 00000 | 00000
Bs() | 0.0000 | 0.0000 | 00000 | 0.0000
86 | 0.0000 | 00000 | 00000 | o.0000

Constant xTerm x2Term x3Term
Result -3.0000 10.3333 -5.0000 0.6667

C
Vector§ Constant xTerm x2Term x3Term
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 I .I
-1.0000 1.8333 -1.0000 0.1667
4.0000 -4.3333 1.5000 -0.1667
-6.0000 9.5000 -4.0000 0.5000
4.0000 -7.0000 3.5000 -0.5000

o|lo|o|o|o|o

Constant x Term x2Term x3 Term
Result | 42.0000 | -54.0000 | 24.0000 | -3.0000

Figure 4.8: The solution to the polynomial QAP problem

47

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Elliptic Curve Pairings

An elliptic curve is simply a set of coordinates that satisfy the equation:

V=23 4ar+b (4.2)

This equation graphs to what can be seen in Figure 4.9. There are two key properties
of this curve [38]. Firstly, the curve is perfectly symmetrical about the x-axis. This
means that any point can be reflected about the x-axis and remain on the same
curve. The second key property of an elliptic curve is that any non-vertical straight
line drawn between two points will hit the curve at only three points.

Figure 4.9: An elliptic curve

The second property is useful as a single point on the curve can be added to itself to
create a new point. Adding a point to itself n times is a fairly trivial process. How-
ever, if you are given a final point on the curve and asked to calculate n, this is very
difficult. This makes it suitable for cryptographic purposes.

When using elliptic curves, we tend to use modulo (typically with the maximum
being a prime number) so that the numbers are restricted to a finite range. There-
fore our elliptic ‘curve’ tends to look more like Figure 4.10.

The system of cryptography is then defined by picking a maximum number, a curve
equation and a public point on this curve. The public key is the public point added
to itself n times, where n is the private key.

48

Chapter 4. Identification =~ 4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

250

200 - . ve

150k + ° oo .

-e
a® .e

100 ¢ . . . - 3 . . '.'

50 s LT, e) .

50 100 150 200 250

Figure 4.10: Point representation of an elliptic curve

Elliptic curve pairings allow you to check more complicated functions on points on
the curve [39]. A pairing is denoted as e(P,) (also known as a ‘bilinear map’) and
has the following properties:

e(P,Q + R) = ¢(P,Q) * e(P, R) (4.3)

e(P+5,Q) = e(P,Q) *e(S,Q) (4.4

It is possible to come up with a bilinear map where the inputs (i.e. P and @) are
elliptic curve points - this is called an ‘elliptic curve pairing’.

49

4.4. NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS Chapter 4. Identification

Basis of zk-SNARKSs

Assume that we have an elliptic curve pairing, denoted (P, @), where P x k = @
(nobody else knows k), and another elliptic curve pairing, denoted (R, S) where
R x k = 5 [40]. The ‘knowledge-of-exponent’ assumption, as outlined by Bellare
and Palacio [41], means that the only way that (R, S) could have been created is by
taking (P,) and multiplying both by some private factor r.

The solution to our QAP problem (the three polynomials we discussed earlier) are ac-
tually linear combinations of a set of polynomials. Using the ‘knowledge-of-exponent’
assumption, the prover can demonstrate that they have a linear combination of the
polynomials, rather than the individual polynomials themselves.

As described by Vitalik Buterin [40], in order to do this we evaluate each of the
polynomials at point ¢ and multiply by some value k. Both of these variables should
be completely private and discarded after the proof is generated.

The prover then needs to show that all three linear combinations have the same
coefficients. In total, the verification process for a zk-SNARK requires an elliptic
curve multiplication for each public input variable and five pairing checks.

50

Chapter 4. Identification 4.5. ZK-SNARKS IN ETHEREUM

4.5 ZKk-SNARKs in Ethereum

At the time of writing, there are only two real projects aiming at creating a devel-
opment framework for zk-SNARKs on Ethereum. The first, libsnark [42] provides a
C+ + implementation of creating an R1CS, an algorithm to generate proofs and an
algorithm to check proofs for the statements. However, there is no direct method
to convert the proof verification algorithm into a smart contract to be used on the
Ethereum network.

Another project that has been developed for zk-SNARKs on Ethereum is ZoKrates [43].
ZoKrates provides a high-level language that compiles to an R1CS, a number of gad-
gets that have been exported from the libsnark library, as well as providing a method
to export proof verifications in the form of a smart contract.

The ZoKrates library is run inside a Docker container and there are six main steps to
create and execute zk-SNARKs using the ZoKrates library.

1. High-Level Language Circuit

The first step is to create the logic for verification. This corresponds to the function
that will be executed by the prover to demonstrate they have the private variables
required to generate the proof. In ZoKrates the keyword ‘private’ is used to denote
private variables, with public variables requiring no keyword.

For example, if we were looking to create a circuit in which a prover would want
to prove that they have a private variable x that, when added to three, generates a
publicly known variable y, we would write the following code:

def main(private x, y):
xX+3=y
return 1

2. Compilation / Code Flattening

The second stage is to compile the high-level language written in Step 1 to an arith-
metic circuit (i.e. flattening the code). This is done through the ZoKrates command-
line interface (‘CLI’) by typing ./zokrates compile — i [path/to/worglcoin.code. This
then creates a compiled file called out.code in the directory.

The steps to ‘flatten’ a complex hashing algorithm such as SHA256 is a fairly com-
plex procedure. We cannot simply use SHA256 natively, we need to decompose it
into several steps and operate on a bit-by-bit basis:

51

4.5. ZK-SNARKS IN ETHEREUM Chapter 4. Identification

def main(bitl_public_hash,..., bit256_public_hash):
/* check all the public inputs are bits */
bitO_public_hash = bitO_public_hash * bitO_public_hash

bit255_public_hash = bit255_public_hash * bit255_public_hash

/* produce the sha256 hash */
/* initialise hash values */
HO = 01101010000010011110011001100111

H7 = 01011011111000001100110100011001

/* check all the private inputs are bits */
bitO_private_input = bitO_private_input * bitO_private_input

bitb11_private_input = bitb511_private_input * bit511_private_input

/* copy chunk into first 16 words w[0..15] of the message schedule
array */
wOb31,..., wlbb0 = bitb1l1l_private_input, ..., bitO_private_input

/* extend the first 16 words into the remaining 48 */
for i from 16 to 63:
sO = (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor
(w[i-15] rightshift 3)
s1 = (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor
(w[i-2] rightshift 10)
wli] = wl[i-16] + sO + w[i-7] + sl

/* initialise working variables */
a = HO

h = H7

/* loop through compression function */
for i from 0 to 63:

S1 = (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate
25)

ch = (e and f) xor ((not e) and g)

templ := h + S1 + ch + k[i] + w[i]

SO0 = (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate
22)

maj = (a and b) xor (a and c) xor (b and c)

temp2 = SO + maj

h=g
g=1

52

Chapter 4. Identification 4.5. ZK-SNARKS IN ETHEREUM

f=e

e = d + templ
d=c

c=b

b=a

a = templ + temp2

/* add the compressed chunk to the current hash value */
hO := hO + a

h7 := h7 + h

/* assign bits to hash value */
bitO_private_hash,..., bit31_private_hash = hO

bit224_private_hash,..., bit255_private_hash = h7

/* check all bits are the same */
bitO_public_hash = bitO_private_hash

bit255_public_hash = bit255_private_hash

return 1

3. Computing the Witness

A witness is computed for the compiled program and all private and public vari-
ables are supplied by the ‘prover’. In order to do this the following is executed
./ zokrates compute — witness —a 01101 This creates a witness file which can
be found at . /witness.

4. Setting Up The Proof

This stage creates a trusted setup for the compiled program from step two. In or-
der to do this the following is executed ./zokrates setup and a proving key and a
verifying key is generated.

5. Exporting the Verifier

ZoKrates then allows the exporting of the verification algorithm in the form of a
smart contract. By executing ./zokrates export —veri fier a smart contract is created
to verify the parameters generated in the preceding steps. This smart contract can
be used for any witness computed on the compiled code.

53

4.5. ZK-SNARKS IN ETHEREUM Chapter 4. Identification

6. Generating the Proof

The proof parameters are then generated by the ‘prover’ by executing ./zokrates
generate — proof. This will produce eight elliptic curve pairings which can be passed
through to the smart contract for verification. An example of the parameters that
are returned:

var

var

var

var

var

var

var

var

A =
["0xbc58bed6b63e82175e9e3cf017f26d5f71a2f36165£3580d02514e3f2f22ae9",
"0x30587068f5a1f61193afccf71f265e277de27e0651204b325b6625¢c2a51bd77e"] ;
Ap =
["0x2437272ec7e61998347ed609e003d1bb9c069903¢c211776a6d0fc8db65906b82" ,
"0x8df6216b168a62a4507df93468cf0e58b5221919ef86642541ddbf54c15e589"] ;
B=
[["0x8d7ce8d510b51d0a25752103da900a7f3ab7ddfa2f73e2ba682a9139¢c25d1f7",
"0x208deb2a232d751e5e0cac266ee43d55ff9¢c219a0b60cd1c61971cde841a705e"],
["0x623ac694f3992eaaf7953c7827ceb6baddad075789b3679b74f9abeOacaddd"
"0x£505cf3d2fa6c24b218ef86254f83fb4d50f 1b63£9c93373e865£04d8c5b936e"]] ;
B_p =
["0x19del1bdf2362573a606e72331c954183c9b98f8664d093682b73ab5fbe6d93a8",
"0x35a943ce82ab2db74de5f6c68375de4029c0def09dae9245db7a18641b63125"] ;
C=
["0x12bfe3da774a0dde4238ec240c136af4d0f089e5e769bad86255104a03¢c2e94b",
"0x1e3418e825cb53d2eeef37fab87abfObdfcc6415361f1f6a15731effcfOb2£58"] ;
C_p =
["0x2c5f8013378ff540b33ae444d77dd17a407762f8940c05bb692ael13bdd5cec8f",
"0x1a4fd227107bba27f57bbaa9e2338d990fd80dc6bb8a8dbc1bd69479¢cc737df3"] ;
H =
["0x26c0d5e8b23bd7730636067406c59342081ca73cc6f2d2fb2acd6d676be80f1e",
"0x419e311996e1c6d0ababeba8d41357a64c92091873185a5e65bfad0186330£3"] ;
K=
["0x539752f747c989c355aecf876d0f5aeae88796b9eed8709d4c212248be089ca",
"0xa0a88a63c312f8dc82741c24885e6527a9f4e090d06c823151ebd7e9ceadOcc"] ;

54

Chapter 4. Identification 4.5. ZK-SNARKS IN ETHEREUM

7. Executing the Smart Contract Proof

In order to verify these proof parameters, the above parameters and the public input
parameters are passed through to the smart contract using a web3 call. For example,
the following Javascript code would be executed from the front-end:

var A =

["0xbc48bed6b63e82175e9e3cf017£26d5f71a2f36165£3580d02514e3£2f22ae9",
"0x30587068f5a1f61193afccf71£265e277de27e0651204b325b6625c2a51bd77e"] ;

var A_p =

["0x2437272ec7e61998347ed609e003d1bb9c069903c211776a6d0fc8db65906b82",
"0x8df6216b168a62a4507df93468cf0e58b5221919ef86642541ddbf54c15e589"] ;

var B =

[["0x8d7ce8d510b51d0a25752103da900a7f3ab7ddfa2f73e2ba682a9139¢c25d1£f7",
"0x208deb2a232d751e5e0cac266ee43d55f£9¢c219a0b60cd1c61971cde841a705e"],
["0x623ac694f3992eaaf7953c7827ceb6baddad075789b3679b74f9abelacaddld",

"0xf505cf3d2fa6c24b218ef86254f83fb450f 1b63f9¢c93373e865f04d8c5b936e"]] ;

var B_p =

["0x19del1bdf2362573a606e72331c954183c9b98f8664d093682b73abbfbe6d93a8",
"0x35a943ce82ab2db74de5f6c68375de4029c0def09dae9245db7a18641b63125"] ;

var C =

["0x12bfe3da774a0dde4238ec240c136af4d0f089e5e769ba486255104a03c2e94b",
"0x1e3418e825cb53d2eeef37fab87abf9bdfcc6415361f1f6a15731effcfIb2£568"] ;

var C_p =

["0x2c5£8013378f£540b33ae444d77dd17a407762£8940c05bb692ae13bdd5cec8t",
"0x1a4fd227107bba27f57bbaa9e2338d990fd80dc6bb8a8dbc1bd69479¢cc737d£3"] ;

var H =

["0x26c0d5e8b23bd7730636067406c59342081ca73cc6f2d2fb2acd6d676be80f1e",
"0x419e311996e1c6d0ababeba8d41357a64c92091873185a5e65bfad0186330£3"] ;

var K =

["0x539752f747c989c355aecf876d0f5aeae88796b9eed8709d4c212248be089ca",
"0xa0a88a63c312£8dc82741c24885e6527a9f4e090d06c823151ebd7e9ceadOcc"] ;

var I = [0, 1, O, 1, O, 1, O, O, O, 1, O, 1, O, 1, 1, 0, 1, 1, O, 1, 1,

1, 0,1,0,1,0,0,1,0,0,1, 1];

return WorglCoin.deployed().then(function(instance) {

B

app = instance;

return app.consumerSignUp(enteredHash, A, A_p, B, B_p, C, C_p, H, K,
I, {from: consumerl, value: 0});

19

55

4.6. WORGLCOIN’S IDENTIFICATION SYSTEM Chapter 4. Identification

4.6 WorglCoin’s Identification System

The UBI system presented in this project requires an individual to prove that they
have the hash value of their private data (which the government can also construct),
without revealing any of the corresponding information that has led to that hash
in a public transaction. There are several main steps in WorglCoin’s identification
system, an outline of which can be found in Figure 4.11.

1. Contract Owner Supplies Hash

In the WorglCoin system, the contract owner is responsible for submitting eligible
hashes. This will be the SHA256 compression function hash of an eligible citizen’s
name, national insurance, date of birth and unique code sent to their home address.
Given the new nature of ZoKrates, all strings have to be converted to bits, appended
to one another, padded to 512 bits and then the SHA256 compression algorithm is
applied.

As a result, the smart contract will hold an eligible consumer’s hash which is publicly
visible but gives away no private details about a citizen.

2. A Consumer Enters Details

A new consumer which has not signed up to the site is then able to enter their details
into the web application. In the background, without the user realising, the details
are converted to bits, appended to one another, and then padded to 512 bits. This
will act as the private input to the zero-knowledge proof.

3. Information Is Sent to Server

The consumer’s 512-bit private information, as well as the first 32 bits of the public
hash, is then sent to a server which is running a Docker container of the modified
ZoKrates software.

The ZoKrates software has been amended somewhat so that it can verify that the
first 32 bits of the public hash are equal to the first 32 bits of the SHA256 compres-
sion hash of the private information supplied in the stage of computing the witness.

The reason this has been done is that verifying all 256 bits of the hash would cre-
ate too many constraints and thus make the on-chain, smart contract verification far
too expensive. A four-byte check was used in line with many common applications,
including the commonly used checksum (used within systems such as Bitcoin). How-
ever, as discussed in later sections, further work can be done to check all bits of the
hash and therefore ensure the system is totally secure.

The node server then uses this information to compute a witness (Step 3 above)

56

Chapter 4. Identification 4.6. WORGLCOIN’S IDENTIFICATION SYSTEM

and generate a proof (Step 6 above). The server then returns the proof variables
back to the user’s front-end.

4. An Ethereum Transaction is Triggered

Behind the scenes an Ethereum transaction is triggered in which the user’s Ethereum
address is used to call the ‘verifyTx’ function which verifies the zero-knowledge
proof.

All parameters are passed to the function, as well as the public hash generated from
the inputs. This function then checks that the zero-knowledge proof passes and the
consumer’s hash is eligible in the system.

If the consumer has provided valid information then the zero-knowledge proof passes
and the consumer is set-up with an account. This has happened without the user
realising, and without the user giving away any private information on the public
blockchain.

The government simply adds the hash of

the information to the contract. No private Smart Contract
information is revealed.
Citizen A

‘ Full Name ‘ SHA256 Hash ‘ <CONTRAaCT>
National Insurance
Date of Birth
Address

Government

National Insurance
Date of Birth
Address A citizen proves that they have all the
information required to create hash. No
private information is revealed.

Citizen A
Zero-Knowledge
@) | e) Siislll =) | </conTRacT>

Citizen

Figure 4.11: WorglCoin’s identification system

57

Chapter 5

Using Worglcoin

This chapter outlines the React-based web application, with a full user guide detail-
ing how key stakeholders (the contract owner, consumers and businesses) use the
service, as well as how the system has been developed so third party applications
can accept the UBI token.

5.1 Functionality Overview

The web application is built using the React.js JavaScript library [44] given its ease
of use (building individual reusable ‘components’) and its superior rendering per-
formance. Interaction between the front-end and smart contract is done using the
web3.js [45] library. The entire system design can be found in Figure 5.1.

Business Consumer Contract Owner
Interacts with --> <-- Interacts with
<-- Requests zero-
knowledge proof
Node Server Front-End <= Senves
(Running Docker) (React, web3.js)
Send zero-knowledge
proof parameters --> Q A
= !
g S
38 &
! 2
v »
<-- Sends zk-SNARK :
zk-SNARK Contract proof \
(Zero-knowledge proof UBI Smart Contr.act 1
verification) (UBI system logic) :
Verifies zk-SNARK :
[IEEl = Blockchain 1

Figure 5.1: The final design of the Worglcoin system

58

Serving Platform
(local machine, central
serveror IPFS)

Chapter 5. Using Wérglcoin 5.1. FUNCTIONALITY OVERVIEW

Installation

Before installing and using the Worglcoin software, the user needs to have installed:
the npm package manager [46], Docker [47] and Metamask [48]. Once these are
installed, the following commands can be run to get a local version of the project up
and running:

$ git clone https://github.com/matthewsmorrison/Worgl-Coin
$ cd Worgl-Coin

$ npm install

$ ganache-cli

$ truffle migrate

$ npm run start

$ node server

Using the Software - Contract Owner

Once the website has been hosted on the local machine (the website should be lo-
cated at http://localhost:3000/), navigate to the Metamask extension and ensure
that you are connected to the local Ethereum network (see Figure 5.2). Then navi-
gate to your Ganache CLI, copy the private key of the first account (see Figure 5.3)
and import it into Metamask (see Figure 5.4).

As the contract owner, you will now be able to navigate to the administration page
either by clicking Administration’ in the top right-hand corner, or navigating to
‘http://localhost:3000/administration’. This screen allows the contract owner to
see key application statistics (e.g. how many consumers are registered) as well as
interact with the contract (changing the value of the UBI token or resetting the token
balance).

Furthermore, this page allows the contract owner to add an individual’s informa-
tion to allow them to sign-up to the service. The owner enters the individual’s full
name, the national insurance number, the date of birth and the secret phase sent to
the individual’s address (see Figure 5.5). Once you click Add Consumer Hash’ this
will prompt a Metamask transaction which should be subsequently accepted.

59

5.1. FUNCTIONALITY OVERVIEW Chapter 5. Using Wérglcoin

& @ WergICoin - Ether-Backed Cry x A) Matthew

C | @ localhost:3000 o

" . Try the New MetaMask Now or Learn More
WarglCoin

Ropsten Test Network

Kovan Test Network

B Rinkeby Test Network

An Ether-Backed Universal Basic Income
i A s

@ Localhost 8545

: ustom RP!

o=,

Figure 5.2: Contract owner user guide: step one

dyn3145-144:Worgl-Coin MatthewMorrison$ ganache-cli
Ganache CLI v6.1.6 (ganache-core: 2.1.5)

Available Accounts
0xda7212641e2c6c632b8d4746fd45f024bad2ccbe
0xca02292fb355640cf13dcbd77431204c4733b66f
0xe386472946af6464cb795da91098b406962628a
0xa594fd56984e80c2bec67f1807e6f8dbd99276b7
0x3b0a5664ac9a077d8536fdbf385b1lb0a322411ec
Oxdb774fe3ef7c1df8019fae053145eal9ebd0d623
0x3f530b45cdabc9f68ce70e0adfffb69fd96039ac
0x1310e332c216bdadele6bc8627b204bObOdbea26
0x522080d17fb386f5eabc7ead1020ce5f005cfd3e

(9) 0x51bafe385200d6024682fal4a2f198c1783c4e33

Private Keys

0x3d002e610416f12c48eb58b6961187b4fd383ff0d867172e2353f07c85ab9762
Oxd6a4al5f35839f1b3483c8efad2f44d4df5b6ab6de81bbe63873b0de7b87badf
0xe06c95c239f59bf8bee500ablcc599d9aldadc7321dd63c3d10f3e5c6e7415F7
Oxfel5431ad22ad44eb32b8aeceead21de25a81875e49276ac3d2b16281bdeb0a789
0xcO1c9acf95bd310ae923a57ffb09a569442194fcd95d5b99a808ea7db842a5eb
0xf0334a248272e926b6e929aa82fe2b827f94a51721dfa596da070d05675252f0
0x3adc87cbc1e09408b0d9d80f54359ba3b75f8529d1c4cd59bfcbad6fb1949629
0x8dd11cf3b16b281b6138b518df1350e747a74afe0074545e3786ef4b48eeed75
0xdc37adbb08461639d8b4f628138e2fc22e94abfcb4a5d93b94893399f7ee9108
(9) 0x53462d0ae92ca714ae387d3f2993a8e582fc47e3839ee6969f779a61b1541777

HD Wallet

Mnemonic salt aisle cover cannon dance dose speak coach that celery beyond dress
Base HD Path: m/44'/60'/0'/0/{account_index}

Figure 5.3: Contract owner user guide: step two

60

Chapter 5. Using Worglcoin 5.1. FUNCTIONALITY OVERVIEW

- @ Wergleont etecmacked Gl _

< C' | @ localhost:3000

Try the New MetaMask Now or Learn More

Contract Balance: 0.0000 Ether (US$0), Token Value: 0.0020 Ether (US$0.53)

€ v T ACCOUNTS

Imported accounts will not be
associated with your originally created
MetaMask account seedphrase. Learn
more about imported accounts here.

SELECT TYPE

WO rglCOi n Private Key

An Ether-Backed Universal Basic Income Doste vounprvatekeyStingihore

Figure 5.4: Contract owner user guide: step three

-® U Ee - Elr E e E _

C' @ localhost:3000/administration

Add New Consumer Hash

Full Name (With Middle Names) Matthew Seamus Morrison

National Insurance Number JWB5667A

Date of Birth 11021991

The Secret Phrase Sent To Their Address [~Igovead]

0x932e12445020e7230b084bsfdcef4b3c740713178feb6ca80552cd3f1a2808f5

The Hash To Be Submitted

Figure 5.5: Contract owner user guide: step four

61

5.1. FUNCTIONALITY OVERVIEW Chapter 5. Using Wérglcoin

Using the Software - Business

Within Metamask, copy the private key of the account that has been added as a
business by the contract owner. Once you are logged in as this account, the user
interface will change and you will see three options in the navigation panel: ‘Supply
Items’, ‘Your Orders’ and ‘FAQs’. Importantly, the top of the page shows your token
balance, the Ether balance of the contract and the value you will get for each UBI
token (see Figure 5.6).

As a business, you are able to list items for sale on the site. Navigate to the ‘Supply
Items’ page and enter all the details of the new item (name, URL location of picture,
the quantity you have for sale and the price in UBI tokens). Once an item has been
added, it will appear on the same page under the heading ‘Items Currently Supplied’
(see Figure 5.7).

You are also able to see orders that have been received in the ‘Your Orders’ page.
As a business, when an order is received from a consumer, all relevant details are
found on this page. You can mark an order as sent once it has been dispatched to
the correct delivery location (see Figure 5.8). The item is then located under the
heading ‘Historical Orders’ (see Figure 5.9). A frequently asked questions page can
be consulted if there are problems with the application (see Figure 5.10).

o @ / @ WergICoin - Ether-Backed Cr/ X \\) Matthew

& C' | ® localhost:3000/business_sell_items Y|
WorglCoin Supplyltems YourOrders FAQs

Signed in on account: Business (Business Account)
Your token balance: 0 UBI Tokens (US$0.00)
Contract Balance: 20.0000 Ether (US$5,344), Token Value: 0.0038 Ether (USS$1.02)

Sell Items

List items that you want to sell.

Supply a New Item

The name of the item:

The location of the picture to be used:

The quantity of the item (minimum one):

Figure 5.6: Business user guide: step one

62

Chapter 5. Using Worglcoin 5.1. FUNCTIONALITY OVERVIEW

-@ W _

& (& ‘ @ localhost:3000/business_sell_items Y ‘ o
WoérglCoin Supply ltems Your Orders FAQs
Items Currently Supplied
Picture Item Details Supplier Details

N . e Name: Tesco
¢ Name:Eggs
€8 e #ofltemson Site: 1
e #ofOrders:0

e #ofActive Complaints: 0

* Quantity Remaining: 30
e Price (in UBI tokens): 1

(9]

© Matthew Morrison. All rights reserved.

Figure 5.7: Business user guide: step two

-® WorglColn ; Ether:Backed Cryp _

& c ‘@ localhost:3000/consumer_orders * ‘ o

|Coin Supply Items Your Orders FAQs

Signed in on account: Business (Business Account)
Your token balance: 0 UBI Tokens (US$0.00)
Contract Balance: 20.0000 Ether (US$5,367), Token Value: 0.0038 Ether (USS1.02)

Your Orders

An overview of all orders.

Outstanding Orders

Picture Item Details Quantity Ordered BeenSent Delivery Location Action

e Name: Eggs

e Quantity Remaining: 20 No
o i 10 60
e Price (in UBI tokens): 1

Figure 5.8: Business user guide: step three

63

5.1. FUNCTIONALITY OVERVIEW Chapter 5. Using Worglcoin

-® WEIE S EERELR R Eh 5 _

& c ‘ ® localhost:3000/consumer_orders * ‘ o

WaorglCoin Supply ltems Yo rs FAQs

Historical Orders

Picture Item Details QuantityOrdered ~ BeenSent Delivery Location Action

e Name: Eggs
* Quantity Remaining: 20 Yes Item Has Been Sent
e Price (in UBI tokens): 1

(%)

© Matthew Morrison. All rights reserved.

Figure 5.9: Business user guide: step four

-@ WorglColn ; Ether:Backed Cryp _

& © ‘ @ localhost:3000/business_faq prd ‘ o

Coin Supply Items Your Orders FAQs

What is Universal Basic Income?

Universal Basic Income ('UBI') is a scheme in which all citizens are guaranteed a fixed, regular and unconditional sum of money from the

government. With Artificial Intelligence and other developments threatning many jobs, we believe that UBI is a necessity.

What is Ethereum?

Ethereum is a decentralised platform that runs smart contracts: applications that run exactly as programmed without any possibility of
downtime, censorship, fraud or third-party interference. These apps run on a custom built blockchain, an enormously powerful shared
global infrastructure that can move value around and represent the ownership of property.

How do | install Metamask?

You can install Metamask from this address: metamask.io. You then need to click “Add to Chrome” to install MetaMask as Google Chrome
extension. You then need to click “Add Extension” to confirm and MetaMask will be added. You can see that MetaMask is added by the little

fox logo that shows up on the top right corner.

(%)

© Matthew Morrison. All rights reserved.

Figure 5.10: Business user guide: step five

64

Chapter 5. Using Wérglcoin 5.1. FUNCTIONALITY OVERVIEW

Using the Software - Consumer

Within Metamask, copy the private key of the account that you want to register as
a consumer. Once you are logged in as this account, proceed to the ‘Consumer Sign
Up’ page in the top navigation panel. On this page you are able to verify your de-
tails and sign-up as a consumer (if the contract owner has also added your details
to the site). Type in your details in the correct box and then proceed to click ‘Ver-
ify Details’ (see Figure 5.11). It will take around a minute to verify your account
and, if successful, you will see a Metamask transaction (which should be accepted)
and then a prompt telling you that the account has been registered (see Figure 5.12).

Once you are signed up, you can refresh the page and see your token balance, the
contract balance and the token value at the top of the page. As a consumer you can
buy items by navigating to the ‘Buy Items’ page. On this page you will see all items
for sale and you can then enter the quantity desired and the numeric code of the
delivery location for these items. You will be able to see your token balance update
in real time as you enter the quantity desired (see Figure 5.13). Click the ‘Buy Item’
button and you will receive a Metamask transaction prompt.

Once an order has been made, you can navigate to the ‘Your Orders’ page and see the
current status of your order. If the item has not been marked as sent by the business
it will be visible under the ‘Outstanding Orders’ header. You should also notice that
your UBI balance has been reduced by the total value of your order at the top of the
page (see Figure 5.14).

If an order has been marked as sent by the business, the order will move under
the title ‘Historical Orders’. As a consumer, you have the option of making a com-
plaint against the business (see Figure 5.15). A complaint can be made if an item
has not been received on time. When a business has a complaint against them, the
number of active complaints will be displayed so that other users can evaluate the
business. You are also able to reset the complaint once it has been resolved.

There is also a frequently asked questions page that can be used if there are any
difficulties. This includes answers to many common problems, including issues with
sign-up (see Figure 5.16).

65

5.1. FUNCTIONALITY OVERVIEW Chapter 5. Using Worglcoin

- ® UEeRdn= G @ _

<« C' | @ localhost:3000/consumer_sign_up | &

WarglCoin

Your Ethereum Address Oxc5fdf4076b8f3a5357c5e395ab970b5b54098fef
Your Full Name (With Middle Names) Matthew Seamus Morrison

Your National Insurance Number JWB5667A

Your Date of Birth 11021991

The Secret Phrase Sent To Your Address ~lgov8ad

Verify Detals
We are just confirming your details.
You should get a metamask pop-up shortly (1 min).

Figure 5.11: Consumer user guide: step one

-® WorglColn - Ether:Backed Cryiix _

< C' @ localhost:3000/consumer_sign_up | &

glCoin sumer Sign Up

Your Ethereum Address Oxc5fdf4076b8f3a5357c5e395ab970b5b54098fef
Your Full Name (With Middle Names) Matthew Seamus Morrison

Your National Insurance Number JWE5667A

Your Date of Birth 11021991

The Secret Phrase Sent To Your Address ~lgov8ad

©

You are all set.

Verify Details

Just refresh the page to start using the service.

Figure 5.12: Consumer user guide: step two

66

Chapter 5. Using Worglcoin 5.1. FUNCTIONALITY OVERVIEW

- (@feslconhEcmacteCl _

< C' | @ localhost:3000/consumer_buy_items

(Coin Buyltems Your

Signed in on account: Consumer (Consumer Account)
Your token balance: 1,000 UBI Tokens (US$1,020.00)
Contract Balance: 20.0000 Ether (US$5,359), Token Value: 0.0038 Ether (US$1.02)

Buy Items

You can choose from a selection of everyday items below.

Picture Item Details Supplier Details Purchase ltem
10
N £ e Name: Tesco
e Name:Eggs
& e #ofltemson Site: 1 &
* Quantity Remaining: 30 G
o #ofOrders:
e Price (in UBItokens): 1 [eallBlioke =D
o #ofActive Complaints: 0 New Balance: 990

Figure 5.13: Consumer user guide: step three

-® WorglColn - Ether:Backed Cryi _

& C' | @ localhost:3000/consumer_orders

WorglCoin Buy Items Your

Signed in on account: Consumer (Consumer Account)
Your token balance: 990 UBI Tokens (US$1,009.80)
Contract Balance: 20.0000 Ether (US$5,376), Token Value: 0.0038 Ether (USS$1.02)

Your Orders

An overview of all orders.

Outstanding Orders
Picture Item Details Quantity Ordered ~ BeenSent Delivery Location Action

e Name: Eggs
e Quantity Remaining: 20 No No Actions
e Price (in UBI tokens): 1

Figure 5.14: Consumer user guide: step four

67

5.1. FUNCTIONALITY OVERVIEW Chapter 5. Using Worglcoin

-@ o herpackedeyi> _

& c ‘ ® localhost:3000/consumer_orders Y ‘ o

WarglCoin Buy Items Your Orders FAQs

Historical Orders

Picture Item Details QuantityOrdered ~ BeenSent Delivery Location Action

e Name: Eggs Make Complaint

* Quantity Remaining: 20 Yes

e Price (in UBI tokens): 1 Reset Complaint

(9]

© Matthew Morrison. All rights reserved.

Figure 5.15: Consumer user guide: step five

-@ WorglColn ; Ether:Backed Cryp _

< C | ® localhost:3000/consumer_fag *|

glCoin Buyltems YourOrders FAQs

Universal Basic Income (‘UBI') is a scheme in which all citizens are guaranteed a fixed, regular and unconditional sum of money from the
government. With Artificial Intelligence and other developments threatning many jobs, we believe that UBI is a necessity.

What is Ethereum?

Ethereum is a decentralised platform that runs smart contracts: applications that run exactly as programmed without any possibility of
downtime, censorship, fraud or third-party interference. These apps run on a custom built blockchain, an enormously powerful shared

global infrastructure that can move value around and represent the ownership of property.

How do I install Metamask?

You can install Metamask from this address: metamask.io. You then need to click “Add to Chrome” to install MetaMask as Google Chrome
extension. You then need to click “Add Extension” to confirm and MetaMask will be added. You can see that MetaMask is added by the little
fox logo that shows up on the top right corner.

Why could I not sign up to use the service?

There are a couple of things that could have gone wrong with the sign-up process. Firstly, you need to double check you have enough funds
in your Ethereum account. Typically the verification process will cost around US$3 in total so make sure you have these funds. Secondly, you
may have entered your details incorrectly or they do not match our records. Thirdly, you may not be entitled to sign-up to the service and

we have not registered your details.

Figure 5.16: Consumer user guide: step six

68

Chapter 5. Using Wérglcoin 5.2. UBI TOKEN INTERFACE

5.2 UBI Token Interface

Worglcoin has been developed using a public interface. A third party application
can easily access public functions from within the Worglcoin smart contract to query
users’ token balances, allow users to buy items and many other actions (see Fig-
ure 5.17). By doing this, the Worglcoin UBI token can be spent on third party
websites (assuming the business implementing the application is a registered entity
with Worglcoin) and contribute to the adoption and usability of the token.

A full ERC20 token interface has not been created as Worglcoin tokens are designed
to be non-fungible. This is because consumers should not be able to transfer to-
kens to one another (as this would undermine the principle of token balances being
topped up to a particular level) and businesses should not be able to exchange their
tokens with any other party apart from the contract owner.

Consumer
£3
33
v e
<-- Requests zero- “
knowledge proof
Node Server Worgl Front-End ”
(Running Docker) (React, web3.js) 3¢ Party Front-End
Send zero-knowledge
proof parameters --> ° A ° N
I} i © 1
5 o g m
I E s E}
g o 2 @
i} < H b4
%]) » 3
;v. 3
Sy A O vy - 4 .
| <-- Sends zk-SNARK <-- Makes queries /calls :
! zk-SNARK Contract proof . functions |
: (Zero-knowledge proof Worgl Smart Contract 31 Party Contract |
I verification) (UBksystem logic) (System logic) :
|
1 Verifies zk-SNARK Provides details/ function :
: proof --> returns --> Blockchain |

Figure 5.17: The Worglcoin smart contract interface.

69

Chapter 6

Evaluation

This chapter outlines the evaluation process of the project. This has been conducted
through interviews with Universal Basic Income experts and user testing with poten-
tial UBI recipients and merchants.

6.1 Evaluation Methodology
There are four main areas to be evaluated:

1. Is UBI a credible alternative to the welfare state today? It is important to
get the input of both supporters and non-supporters.

2. Is blockchain a suitable technology to deliver UBI? It is important to estab-
lish whether blockchain adds important elements lacking in the current pay-
ments infrastructure.

3. Is the use of existing government datasets an effective identification method?
Using existing government data is a new area in the cryptocurrency UBI space.
We need to establish whether adopting this approach is sensible and something
the government would be willing to implement.

4. Does backing the token with Ether solve the deflation problem? As dis-
cussed earlier, one of the main problems in cryptocurrency UBI solutions is
the de-valuing of the token due to deflationary mechanics. It is important to
establish whether the design outlined in this project will achieve the stated
goals.

70

Chapter 6. Evaluation 6.2. INTERVIEWS

6.2 Interviews

A series of interviews were conducted with experts in the field of Universal Basic
Income, from those working on UBI projects to leading think tanks:

e Alex Howlett from Greshm [49]. Greshm is a UBI system which uses existing

payments infrastructure [50]. The tokens used in the project (XGD tokens)
are backed one-for-one by the US dollar, with a mechanism in place managing
when an XGD token matures into US dollars. Having been a Software De-
veloper, Alex Howlett is the founder of Greshm and has written a paper on
Macroeconomics.

Otto Lehto from the Adam Smith Institute [51]. The Adam Smith Institute
is a non-profit and non-partisan think tank based in the UK, typically concen-
trating on neo-liberal and free-market ideas [52]. The Adam Smith Institute
typically promotes the use of a simple welfare system based around a Negative
Income Tax or Basic Income that tops up the wages of the poor and guarantees
that work always pays. Otto Lehto is currently completing his PhD in Politi-
cal Economy at Kings College London and co-authored a paper entitled ‘Basic
Income Around the World - The Unexpected Benefits of Unconditional Cash
Transfers’ for the Adam Smith Institute [53].

Lennard Hulsbos and Paul Anca from C.UBI [54]. C.UBI is a UBI initiative
utilising blockchain technology to enable secure and independent tracing of
the world’s resources [55]. Lennard Hulsbos and Paul Anca are the founders
of C.UBI, with Lennard having focused on bringing sustainable strategies into
existing businesses throughout his career and Paul has focused on business,
economics and design.

Professor Donald Hirsch from the Joseph Rowntree Foundation [56]. The
Joseph Rowntree Foundation is an independent social change organisation
working to solve UK poverty [57]. Professor Donald Hirsch is responsible for
the Minimum Income Standard (MIS) for the United Kingdom, a programme
which researches what income households need to reach a minimum accept-
able standard of living in the view of members of the public.

71

6.2. INTERVIEWS Chapter 6. Evaluation

Summarising the feedback from these interviews across the main four topic areas:

Is UBI a credible alternative to the welfare state today? There is mixed opin-
ion on this topic, with some individuals believing that UBI is a long overdue policy
(see Figure 6.1 and Figure 6.2) whereas others believe it is entirely infeasible. Ar-
guments against UBI typically centre around the difficulty in convincing a society to
unconditionally fund individuals regardless of whether they choose to work or not
and the huge expense required to fund the scheme. Furthermore, some question
whether a flat payment to each member of a heterogeneous society with different
social needs is desirable (see Figure 6.3).

Is blockchain a suitable technology to deliver UBI? Some key principles of an
efficient UBI scheme should be transparency (ensuring all citizens know everyone
is getting the same amount) and security, so citizens know that they are guaran-
teed an income in the future (see Figure 6.4). Blockchain technology is a suit-
able mechanism to deliver the transparency required of such a system. However,
some question whether governments are equipped to deal with the complexity of
blockchain technology at the current time. Furthermore, there are questions sur-
rounding blockchain’s suitability in its current form given its resource intensity and
lack of scalability (see Figure 6.5).

Is the use of existing government datasets an effective identification method?
The identification method used in this project was cited as a unique and robust way
to verify the credentials of an individual, assuming the deployment of this scheme
comes from a government entity. Governments already have this data and already
uniquely identify individuals, so there is no need to reinvent the wheel (see Fig-
ure 6.6). However, some flaws were pointed out, including the fact that a user may
be able to sell their credentials to a malicious third party in exchange for fiat currency
(see Figure 6.7). However, this was not considered a unique flaw to this particular
identification system as all technological solutions are at risk from individuals either
selling their credentials or being coerced into doing so. Furthermore, it was men-
tioned that an identification system, such as the one deployed in this project, would
not be required when we move into a world with digital identities which may be
government issued.

Does backing the token with Ether solve the deflation problem? It was gen-
eral consensus that it is difficult to back UBI tokens with real value. The devalua-
tion mechanism used in this project (topping up a user’s balance to the same level
each month) was cited as a smart way to promote spending of the UBI token (see
Figure 6.8). In terms of backing this project’s token with Ether, in general it was
perceived as a sensible scheme.

72

Chapter 6. Evaluation

“I think UBI is long overdue. Technological innovation and its impact
has already been felt. For hundreds of years we have been introducing
inefficiencies into the labour market as a way to get money to people. The
labour market over time is less and less efficient in terms of allocating
labour... Basic income is the answer and, for example, I am not sure the
Great Depression would have happened if we had basic income.” [49]

Figure 6.1: Arguments for UBI from Alex Howlett

“I think that I would advocate [UBI] today and I would have advo-
cated it thirty or forty years ago. There may be some resistance and we
risk losing some of the key features of UBI, moving towards conditional
income or some watered down version of negative income tax. These
schemes may restrict the progress of UBL.” [51]

Figure 6.2: Arguments for UBI from Otto Lehto

“The question then arises whether a flat-rate payment to every cit-
izen is the best way to deploy this money. Ultimately it puts all your
social eggs in the one basket of giving each person the same amount of
money to get by as they choose. But people’s needs are very different,
and the social benefits of ensuring services such as education, health and
affordable housing may well be considered to merit at least some social
resources.” [S6]

Figure 6.3: Arguments against UBI from Donald Hirsch

“I think that simplicity and transparency are key features of UBIL. They
can help generate a basic security for economic agents. They can see
[what they will get paid] into the future and monitor and track what
their neighbours and other individuals in society are getting paid.” [51]

Figure 6.4: Key features of UBI from Otto Lehto

73

6.2. INTERVIEWS

6.2. INTERVIEWS Chapter 6. Evaluation

“I think blockchain in today’s form [is] probably not [suitable]. It
is too resource intensive, it’s not scalable, it’s not fast enough. [These
things are needed] to deliver a global platform.” [54]

Figure 6.5: Blockchain is not currently ready from Lennard Hulsbos

“A lot of these [UBI] projects are reinventing the wheel. Governments
already have ID systems in place. [Your system] is definitely on the right
track with that. A lot of these decentralised systems that are trying to cre-
ate unique identification... will end up reinventing a lot of the institutions
they are trying to move away from.” [49]

Figure 6.6: Advantages of identification method from Alex Howlett

“One person could say ‘Hey, I need 500 pounds right now, I am going
to sell my credentials to this other person and they can collect my basic
income from now on.” These problems are not specific to your system,
there is no way to do this perfectly. Even if you imagine a perfect system
with perfect identification, you can come up with a scenario where some-
one can give their credentials to someone else, or be coerced into doing
so. There is no way around that. Any system needs to be robust to some
identity fraud.” [49]

Figure 6.7: Criticism of identification method from Alex Howlett

“[Topping up a user’s balance each month] is a really cool idea and
I have never heard of anything like that before. I was expecting you to
say you have some sort of demurrage system but this is actually much
cooler.” [49]

Figure 6.8: Advantages of devaluation mechanism from Alex Howlett

74

Chapter 6. Evaluation 6.3. USER FEEDBACK

6.3 User Feedback

For further evaluation of this project, twenty individuals from a variety of back-
grounds experimented with using the software. The process involved an individual
user being sat in front of the software for a period of twenty minutes, with a brief
explanation taking place at the beginning covering the purpose of the service and
how to sign transactions using Metamask. Following the testing, a user would then
be presented with a survey (see Figure 6.9) asking for their feedback on key areas.

In terms of the sample, there was a diverse range of cryptocurrency knowledge (see
Figure 6.10). However, there was far more limited knowledge of Universal Basic
Income across the participants (see Figure 6.11). Around 40% of test users rated the
ease of use of the website five out of five (see Figure 6.12) and 50% of users rated
the overall design of the site at five out of five (see Figure 6.13).

The survey also specifically asked users whether the sign up process was intuitive,
given the importance of this process to the project overall. Around 75% of users
rated the sign up process as four out of five or above (see Figure 6.14), however
several comments mentioned that it took a while for the sign up process to complete
(see Figure 6.17).

Overall, 70% of users would consider using the service in the future (see Figure 6.15)
and 55% would recommend the service to their friends (see Figure 6.16). Overall,
the user feedback indicates that the web application simplifies the UBI scheme and
significantly hides the back-end complexity.

6.4 Merchant Feedback

In terms of merchant feedback, an interview was conducted with Jonathan Mitchell
from the ethical clothing platform ‘Brothers We Stand’, which has both a physical
and online presence [58].

The key feedback from this interview was that cash flow is a primary concern of
businesses. Any initiative has to ensure that a business can sustain itself from a cash
flow perspective. Therefore, any mechanism that will exchange tokens for value
needs to maximise cash flow.

If some form of tax rebate is used (such as a VAT refund), then the discount re-
ceived needs to be substantial to overcome the cash flow shortage this will cause.
Furthermore, a business will only be interested in the service if it increases its user
base to a satisfactory level to warrant the increased overhead of accepting tokens.

Finally, the inherent volatility in cryptocurrency today is a concern. A business needs
to be secure in the fact that an item is going to be sold for the same amount each
month no matter what.

75

6.4. MERCHANT FEEDBACK

Chapter 6. Evaluation

Universal Basic Income

A short survey assessing your views of the Universal
Basic Income software you have just used.

*Required

How familiar are you with cryptocurrency? =

1 2 3 4 5
Notatsl © © ©O ©O O Very
How familiar are you with Universal Basic Income? *
1 2 3 4 5
Notatal O O ©O ©O O |Very
How easy did you find the website to use? *
1 2 3 4 5
Dificull © © O O O Easy
How much did you like the design of the website? *
1 2 3 4 5
Notatal O O ©O ©O O |Very
How easy did you find the sign up process? *
1 2 3 4 5
Dificull © © O O O Easy
Would you consider using this service in the future?
O Yes

O No

O Maybe

Would you recommend this service 1o your friends? *
O Yes

O No

O Maybe

Any suggestions / comments?

Your answer

B

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google.
Report Abuse - Terms of Service - Additional Terms

Figure 6.9: Google survey given to users

76

Chapter 6. Evaluation 6.4. MERCHANT FEEDBACK

1. How familiar are you with cryptocurrency?

35%
30%
30%
8 25%
S 25%
2 20%
a 20%
o o
K 15%
= 15%
8
e 10%
5 10%
-
5%
0%
Not at all (1) 2 3 4 Very (5)
Figure 6.10: Question one of the user survey
2. How familiar are you with Universal Basic Income?
45%
40%
40%
8 35%
&
T 30%
5 25%
8 25%
K 20%
- 20%
B 15%
2 15%
-
o 10%
5%
0%
0%
Notatall (1) 2 3 4 Very (5)

Figure 6.11: Question two of the user survey

77

6.4. MERCHANT FEEDBACK

Chapter 6. Evaluation

% of Total Respondents

% of Total Respondents

45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

3. How easy did you find the website to use?

40% 40%

15%

5%

0%

60%

50%

40%

30%

20%

10%

0%

Difficult (1) 2 3 4 Easy (5)

Figure 6.12: Question three of the user survey

4. How much did you like the design of the website?

50%

25%

20%

5%

Notatall (1) 2 3 4 Very (5)

Figure 6.13: Question four of the user survey

78

Chapter 6. Evaluation 6.4. MERCHANT FEEDBACK

5. How easy did you find the sign up process?

50%

45%
45%
40%
g
g 35%
° 30%
& 30%
&
& 25%
B 20%
g 15%
E 19% 10%
2 10% -
5%
0% 0%
Difficult (1) 2 3 4 Easy (5)
Figure 6.14: Question five of the user survey
6. Would you consider using this service in the future?
80%
70%
70%
£ 60%
[T}
g 50%
o
8 a0%
g 30%
% 20% 20%
(1]
& 10%
10%
0%
No Maybe Yes

Figure 6.15: Question six of the user survey

79

6.4. MERCHANT FEEDBACK Chapter 6. Evaluation

7. Would you recommend this service to your friends?

60% 55%

50%

40% 35%

30%

20%

% of Total Respondents

10%
10%

0%

No Maybe Yes

Figure 6.16: Question seven of the user survey

Any suggestions / comments?

7 responses

Great website. Maybe more explanation about what the transactions etc. are for.
The sign up process is to o slow and doesnt tell you much.

No

Cool idea

Needs more explanation. The explanation at the beginning only covered basics of transactions but | found them
quite confusing.

Why was the sign up process so slow?

UBI is definitely needed. Good implementation.

Figure 6.17: Question eight of the user survey

80

Chapter 6. Evaluation 6.5. SUMMARISING THE FEEDBACK

6.5 Summarising the Feedback

As discussed, the evaluation of this project has been conducted through interviews
with experts in the field of Universal Basic Income and user testing with potential
UBI recipients and merchants. Summarising across the four main areas:

Is UBI a credible alternative to the welfare state today? There is a significant
amount of debate surrounding Universal Basic Income and whether it is an effective
policy. Today, a UBI policy would be hard to justify given the huge cost of deploy-
ing this scheme and the fact that funds are better directed towards lower income
individuals. However, as Artificial Intelligence and other technological innovations
disrupt the labour market further, society will find it more difficult to reward labour
with stable income. Therefore, in the future, UBI may be the only option for provid-
ing a stable source of income.

Is blockchain a suitable technology to deliver UBI? Whilst blockchain is an ef-
fective method to deliver Universal Basic Income (providing transparency and flex-
ibility), the cost of the system developed in this project is too high for full-scale
adoption across an entire society. Furthermore, with the cost of several transactions
being incurred by the consumer (signing up for the service, buying items), this po-
tentially restricts lower income individuals from using the system. The mechanism
of incentivising users to spend their tokens is particularly effective and one that is
not used in any other system.

Is the use of existing government datasets an effective identification method?
The identification method used in this project is a new development in the Univer-
sal Basic Income space. The use of pre-existing government data is a robust way of
uniquely identifying individuals, with the use of zero-knowledge proofs protecting
the privacy of those individuals. However, no system is perfect in the prevention of
Sybil attacks. Even users of the UBI scheme developed in this project would be able
to sell their credentials to a rogue actor in exchange for fiat currency.

Does backing the token with Ether solve the deflation problem? Whilst the
technological mechanism for backing the token with real value is an effective one,
the use of cryptocurrency and its current volatility will not be attractive for mer-
chants using the site. The value of the largest cryptocurrencies can vary significantly
month-on-month, meaning that: 1) merchants have to accept this volatility or 2) the
contract owner needs to constantly change the exchange rate for the token. Neither
of these solutions are ideal.

81

6.6. ADDRESSING THE FEEDBACK Chapter 6. Evaluation

6.6 Addressing the Feedback

Based on the evaluation of this project a number of improvements could be made:

Is Blockchain a suitable technology to deliver UBI? The use of a side-chain or
different blockchain technology (potentially utilising proof-of-authority rather than
proof-of-work) could bring down the transaction costs of this system.

Is the use of existing government datasets an effective identification method?
A secondary layer of protection needs to be added to the identification method in
this project. A mechanism by which rogue accounts can be reported and assessed
by humans is required, or a technological solution of using Artificial Intelligence to
identify rogue accounts. This would add another layer of protection against Sybil
attacks.

Does backing the token with Ether solve the deflation problem? In order to
reduce the volatility of the value received by merchants, a stable coin or fiat cur-
rency needs to be used. A method of plugging in the smart contracts to existing
payment infrastructure could be developed, or the use of a stable coin. This would
provide a more stable source of income to merchants and make them more likely to
accept the token for goods and services.

82

Chapter 7

Conclusion

This chapter summarises the achievements that have been made in this project and
examines future potential areas of research in cryptocurrency-based UBI systems and
zero-knowledge proofs on Ethereum.

7.1 Summary of Achievements

This project addressed the universe of UBI schemes, their current drawbacks and
proposed a new UBI system backed by Ether, a devaluation mechanism to incen-
tivise spending and a zero-knowledge proof based system for uniquely identifying
individuals.

An Ethereum-based, smart contract system has been built to deploy a UBI token and
all the logic underpinning the commercial use of the token. Furthermore, the system
allows businesses that have received UBI tokens to exchange them for Ether at a
pre-defined rate as determined by the contract owner. This ensures that businesses
are incentivised to list real products and services for sale as the token is underpinned
by real value.

We have thoroughly reviewed security principles and measures implemented to mit-
igate these risks. Furthermore, given that one of the most important aspects of a
government-backed UBI system is cost, the system has been built with efficiency in
mind, with a number of techniques implemented to minimise the cost of deployment
and function execution.

Zero-knowledge proofs on Ethereum have been explored and a proof-of-concept sys-
tem has been implemented using new, in-development techniques. Furthermore, a
novel approach has been taken to verify the pre-image of a SHA-256 hash. This
system allows users to verify their data and check it against existing government-
held data. Importantly, users do not need to publish any private information on the
Ethereum blockchain.

83

7.2. EVALUATION OVERVIEW Chapter 7. Conclusion

7.2 Evaluation Overview

As outlined in Chapter 6, a thorough evaluation process has been conducted using
a number of interviews with experts in the field of Universal Basic Income and user
testing with potential UBI recipients and merchants. The key evaluation points that
arose:

1. Is UBI a credible alternative to the welfare state today?

e Summary: there is a significant amount of debate surrounding Univer-
sal Basic Income and whether it is an effective policy. Today, a UBI policy
would be hard to justify given the huge cost of deploying this scheme, and
the fact that funds are better directed towards lower income individuals.
However, as Artificial Intelligence and other technological innovations dis-
rupt the labour market further, society will find it more difficult to reward
labour with stable income. Therefore, in the future, UBI may be the only
option for providing a stable source of income.

2. Is blockchain a suitable technology to deliver UBI?

e Summary: whilst blockchain is an effective method to deliver Universal
Basic Income (providing transparency and flexibility), the cost of the sys-
tem developed in this project is too high for full-scale adoption across
an entire society. Furthermore, with the cost of several transactions be-
ing incurred by the consumer (signing up for the service, buying items),
this potentially restricts lower income individuals from using the system.
The mechanism of incentivising users to spend their tokens is particularly
effective and one that is not used in any other system.

e Improvements: the use of a side-chain or different blockchain technology
(potentially utilising proof-of-authority rather than proof-of-work) could
bring down the transaction costs of this system.

3. Is the use of existing government datasets an effective identification
method?

e Summary: the identification method used in this project is a new de-
velopment in the Universal Basic Income space. The use of pre-existing
government data is a robust way of uniquely identifying individuals, with
the use of zero-knowledge proofs protecting the privacy of those individu-
als. However, no system is perfect in the prevention of Sybil attacks. Even
users of the UBI scheme developed in this project would be able to sell
their credentials to a rogue actor in exchange for fiat currency.

e Improvements: a secondary layer of protection needs to be added to the
identification method in this project. A mechanism by which rogue ac-
counts can be reported and assessed by humans is required, or a techno-
logical solution of using Artificial Intelligence to identify rogue accounts.
This would add another layer of protection against Sybil attacks.

84

Chapter 7. Conclusion 7.3. APPLICATIONS

4. Does backing the token with Ether solve the deflation problem?

e Summary: whilst the technological mechanism for backing the token
with real value is an effective one, the use of cryptocurrency and its cur-
rent volatility will not be attractive for merchants using the site. The value
of the largest cryptocurrencies can vary significantly month-on-month,
meaning that: 1) merchants have to accept this volatility or 2) the con-
tract owner needs to constantly change the exchange rate for the token.
Neither of these solutions are ideal.

e Improvements: in order to reduce the volatility of the value received by
merchants, a stable coin or fiat currency needs to be used. A method of
plugging in the smart contracts to existing payment infrastructure could
be developed, or the use of a stable coin. This would provide a more stable
source of income to merchants and make them more likely to accept the
token for goods and services.

7.3 Applications

With the growing interest in Universal Basic Income, the techniques that have been
used in this project could benefit a number of different parties.

Other UBI Projects: a number of other UBI projects explored in Chapter 2 of this re-
port are concerned with the value of their token and how to uniquely identify users
in their system. Based on the system implemented in this project, these systems can
explore new methods to cover these concerns.

Government: across the globe there has been growing political backing for a UBI
scheme. However, a lot of the pilots being run are expensive to implement and offer
no flexibility. A government could explore the system in this project and propose a
low-cost, flexible way to implement their very own UBI scheme. Furthermore, sim-
ple pilots could be run using an off-the-shelf deployment of this system.

Academia: researchers with an interest in Universal Basic Income, blockchain and
cryptocurrency could benefit from exploring the system that has been implemented
in this project. Furthermore, this system could be built upon depending on the par-
ticular area of interest for the researcher (e.g. making the token fungible and freely
tradeable).

Developers: given the novel implementation of a SHA-256 pre-image zero-knowledge
proof using ZoKrates and Docker, the techniques explored in this project can be used
by other developers to create proof-of-concepts for their applications.

85

7.4. FUTURE WORK Chapter 7. Conclusion

7.4 Future Work

There are a number of areas which can be further explored beyond the findings
presented in this project.

Optimising Zero-Knowledge Proofs on Ethereum

As it stands, the zero-knowledge proof identification system that has been imple-
mented in this project is fairly costly. In November 2017, Ethereum introduced the
Byzantium update which added a number of cryptographic primitives to their smart
contracts. The smart contracts used for zero-knowledge proof verification could be
potentially improved by using these cryptographic primitives. By reducing the cost
of verification, it makes the system much more feasible and affordable for potential
users.

More Secure Zero-Knowledge Proof System

As it stands, the system implemented in this project uses a zero-knowledge proof
that verifies the first 32 bits of the hash produced by the SHA-256 compression
function. This has been done as it would be too costly to verify a full 256 bit hash
on the Ethereum blockchain today. Therefore, future work can be done to explore
how to verify a full 256-bit hash on-chain using a number of potential techniques,
including packing the bits into a number of output fields and creating new data
types. Furthermore, the functionality of ZoKrates should be expanded to allow a full
SHA-256 hash function to be utilised.

Developing Third-Party Applications on Top of UBI Coin

An interface has been created for the UBI token so that other businesses can allow
signed-up users to spend tokens on their site. Future work could concentrate on how
to make this system more open and actually develop third-party applications on top
of the UBI system.

Digital Fiat Currency

The system designed in this project has been backed using Ether, the cryptocurrency
behind the Ethereum network. However, the ideal backing for such a system is a
digital version of Fiat currency, such as a Digital Pound or a Digital Dollar. Depend-
ing on the evolution in this space, future work could be done around backing this
system with a digital version of Fiat currency or a stable coin which is backed by Fiat
currencies.

86

Chapter 7. Conclusion 7.4. FUTURE WORK

Outsourced Delivery System

The delivery system outlined in this project is fairly primitive; a numerical code is
assigned to delivery locations and businesses know these locations. Future work
could concentrate on how to outsource the delivery mechanism to an established
company with a national or international presence. This would require creating a
way for the delivery company to know the delivery address of the consumer without
broadcasting these details.

87

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[12]

CNBC LLC. Elon Musk: Robots will take your jobs, government
will have to pay your wage. [Video] 2016. Available from: https:
//www.cnbc.com/video/2016/11/04/elon-musk-robots-will-take-your-
jobs-government-will-have-to-pay-your-wage.html [Accessed 23rd
January 2018].

Global News. Facebook CEO Mark Zuckerberg delivers Harvard commencement
full speech. [Video] 2017. Available from: https://www.youtube.com/watch?
v=4VwE1W7SbLA [Accessed 18th August 2018].

More T. Utopia. Bedford/St. Martin’s, Boston, Massachusetts, 1999.

Vives JL. On Assistance to the Poor. University of Toronto Press, Toronto,
Canada, 1999.

Wikimedia Foundation, Inc. Thomas More. Available from: https://en.
wikipedia.org/wiki/Thomas_More [Accessed 23rd August 2018].

Wikimedia Foundation, Inc. Johannes Ludovicus Vives. Available from: https:
//commons.wikimedia.org/wiki/File:Johannes_Ludovicus_Vives. jpg [Ac-

cessed 23rd August 2018].

Brundage A. The English Poor Laws. Palgrave Macmillan, Basingstoke, United
Kingdom, 2002.

Wellcome Collection. Poor Law Amendment Act. Available from: https://goo.
gl/images/xh6ZQH [Accessed 23rd August 2018].

Cunliffe J, Erreygers G. The Enigmatic Legacy of Charles Fourier: Joseph Charlier
and Basic Income. Duke University Press, Durham, North Carolina, 2001.

Friedman M. Capitalism and Freedom. University of Chicago Press, Chicago,
Ilinois, 1962.

King ML. Where Do We Go From Here: Chaos or Community. Beacon Press,
Boston, Massachusetts, 1967.

Office for Budget Responsibility. An OBR guide to welfare spending. Avail-
able from: http://obr.uk/docs/dlm_uploads/An-0BR-guide-to-welfare-
spending-March-2018.pdf [Accessed 11th August 2018]. March 2018.

88

https://www.cnbc.com/video/2016/11/04/elon-musk-robots-will-take-your-jobs-government-will-have-to-pay-your-wage.html
https://www.cnbc.com/video/2016/11/04/elon-musk-robots-will-take-your-jobs-government-will-have-to-pay-your-wage.html
https://www.cnbc.com/video/2016/11/04/elon-musk-robots-will-take-your-jobs-government-will-have-to-pay-your-wage.html
https://www.youtube.com/watch?v=4VwElW7SbLA
https://www.youtube.com/watch?v=4VwElW7SbLA
https://en.wikipedia.org/wiki/Thomas_More
https://en.wikipedia.org/wiki/Thomas_More
https://commons.wikimedia.org/wiki/File:Johannes_Ludovicus_Vives.jpg
https://commons.wikimedia.org/wiki/File:Johannes_Ludovicus_Vives.jpg
https://goo.gl/images/xh6ZQH
https://goo.gl/images/xh6ZQH
http://obr.uk/docs/dlm_uploads/An-OBR-guide-to-welfare-spending-March-2018.pdf
http://obr.uk/docs/dlm_uploads/An-OBR-guide-to-welfare-spending-March-2018.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

World Inequality Lab. World Inequality Report 2018. Available from: https:
//wir2018.wid.world/files/download/wir2018-summary-english.pdf [Ac-
cessed 11th August 2018]. December 2017.

International Monetary Fund. World Economic Outlook. Avail-
able from: http://www.imf.org/en/Publications/WE0Q/Issues/2017/04/
04/world-economic-outlook-april-2017 [Accessed 11th August 2018].
April 2017.

PricewaterhouseCoopers LLP. Will robots really steal our jobs?. Available from:
https://www.pwc.co.uk/economic-services/assets/international-
impact-of-automation-feb-2018.pdf [Accessed 30th May 2018]. February
2018.

Quartz. Bill Gates: We should tax the robot that takes your job. [Video] 2017.
Available from: https://www.youtube.com/watch?v=nccryZ0crUg [Accessed
26th January 2018].

DALIA RESEARCH GmbH. The EU’s Growing Support for Basic Income.
Available from: https://basicincome.org/wp-content/uploads/2017/05/
DR-2017-survey.p/ [Accessed 4th June 2018]. May 2017.

Opinion Desk at The Independent. John mcdonnell’s universal basic income
idea is interesting but will need a lot more thought. The Independent.
31st July 2018. Available from: https://www.independent.co.uk/voices/
editorials/john-mcdonnell-labour-corbyn-universal-basic-income-
practicalities-needs-more-thought-a8471596.html [Accessed 11th
August 2018].

Kansanelékelaitos - The Social Insurance Institution of Finland. Objectives and
implementation of the Basic Income Experiment. Available from: http://wuw.
kela.fi/web/en/basic-income-objectives-and-implementation [Accessed

15th May 2018].

Y Combinator Research, Inc. The first study of basic income in the United States.
Available from: https://basicincome.ycr.org [Accessed 15th May 2018].

Mannabase, Inc. Manna Whitepaper. Available from: http://www.grantcoin.
org/documents/manna-whitepaper.pdf [Accessed 20th May 2018].

Ethereum Foundation. A Next-Generation Smart Contract and Decentralized
Application Platform. Available from: https://github.com/ethereum/wiki/
wiki/White-Paper [Accessed 20th January 2018].

Ethereum Foundation. Solidity Documentation. Available from: https:
//solidity.readthedocs.io/en/develop/index.html [Accessed 20th April
2018].

Buterin V. Vyper Documentation. Available from: https://vyper.
readthedocs.io/en/latest [Accessed 28th June 2018].

89

https://wir2018.wid.world/files/download/wir2018-summary-english.pdf
https://wir2018.wid.world/files/download/wir2018-summary-english.pdf
http://www.imf.org/en/Publications/WEO/Issues/2017/04/04/world-economic-outlook-april-2017
http://www.imf.org/en/Publications/WEO/Issues/2017/04/04/world-economic-outlook-april-2017
https://www.pwc.co.uk/economic-services/assets/international-impact-of-automation-feb-2018.pdf
https://www.pwc.co.uk/economic-services/assets/international-impact-of-automation-feb-2018.pdf
https://www.youtube.com/watch?v=nccryZOcrUg
https://basicincome.org/wp-content/uploads/2017/05/DR-2017-survey.p/
https://basicincome.org/wp-content/uploads/2017/05/DR-2017-survey.p/
https://www.independent.co.uk/voices/editorials/john-mcdonnell-labour-corbyn-universal-basic-income-practicalities-needs-more-thought-a8471596.html
https://www.independent.co.uk/voices/editorials/john-mcdonnell-labour-corbyn-universal-basic-income-practicalities-needs-more-thought-a8471596.html
https://www.independent.co.uk/voices/editorials/john-mcdonnell-labour-corbyn-universal-basic-income-practicalities-needs-more-thought-a8471596.html
http://www.kela.fi/web/en/basic-income-objectives-and-implementation
http://www.kela.fi/web/en/basic-income-objectives-and-implementation
https://basicincome.ycr.org
http://www.grantcoin.org/documents/manna-whitepaper.pdf
http://www.grantcoin.org/documents/manna-whitepaper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://solidity.readthedocs.io/en/develop/index.html
https://solidity.readthedocs.io/en/develop/index.html
https://vyper.readthedocs.io/en/latest
https://vyper.readthedocs.io/en/latest

BIBLIOGRAPHY BIBLIOGRAPHY

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Edgington B. Documentation for the LLL compiler. Available from: http://111-
docs.readthedocs.io/en/latest [Accessed 28th June 2018].

Shrans F. Writing Safe Smart Contracts in Flint. Master’s thesis. Imperial
College London; 2018.

Siegel D. Understanding the dao attack. Coindesk. 25th June 2016. Available
from: https://www.coindesk.com/understanding-dao-hack-journalists/
[Accessed 11th July 2018].

Manning A. Solidity Security: Comprehensive list of known attack vectors and
common anti-patterns, . Weblog. Available from: https://blog.sigmaprime.
io/solidity-security.html [Accessed 13th July 2018].

OpenZeppelin. SafeMath Library. (Version 1.12.0) [Code] Zeppelin. Available
from: https://github.com/OpenZeppelin/openzeppelin-solidity/blob/
master/contracts/math/SafeMath.sol. 2018.

SC-Forks. solidity-coverage. (Version 0.5.11) [Software] npm. Available from:
https://www.npmjs.com/package/solidity-coverage. 2018.

National Institute of Standards and Technology. Digital Identity Guidelines.
800-63B. Colorado: US Department of Commerce; 2018.

Zetter K. Hackers clone e-passports. Wired. 8th March 2006. Available
from: https://www.wired.com/2006/08/hackers-clone-e-passports [Ac-
cessed 4th August 2018].

Big Foundation. Basic Income Guarantee Protocol, . Available
from: https://github.com/bigfoundation/Documentation/blob/master/
BIGwhitepaperEN.md [Accessed 30th May 2018].

Facebook, Inc. Q3 2017 Quarterly Report. 2017. Available from:
https://s21.q4cdn.com/399680738/files/doc_financials/2017/Q3/Q3-
’17-Earnings-call-transcript.pdf [Accessed 4th August 2018].

Quisquater JJ. et al. How to explain zero-knowledge protocols to your children.
In: Brassard G (ed.) Advances in Cryptology - CRYPTO 89 Proceedings. Springer,
New York; 1990. p.628-631.

Bitansky N, Canetti R, Chiesa A, Tromer E. From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again. In: Si-
mons Institute for the Theory of Computing: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference. New York: ACM; 2012. p.326-349.

Buterin V. Quadratic Arithmetic Programs: from Zero to Hero. Weblog. Avail-
able from: https://medium.com/@VitalikButerin/quadratic-arithmetic-
programs-from-zero-to-hero-f6d558cea649 [Accessed 5th August 2018].

90

http://lll-docs.readthedocs.io/en/latest
http://lll-docs.readthedocs.io/en/latest
https://www.coindesk.com/understanding-dao-hack-journalists/
https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://www.npmjs.com/package/solidity-coverage
https://www.wired.com/2006/08/hackers-clone-e-passports
https://github.com/bigfoundation/Documentation/blob/master/BIGwhitepaperEN.md
https://github.com/bigfoundation/Documentation/blob/master/BIGwhitepaperEN.md
https://s21.q4cdn.com/399680738/files/doc_financials/2017/Q3/Q3-'17-Earnings-call-transcript.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2017/Q3/Q3-'17-Earnings-call-transcript.pdf
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

BIBLIOGRAPHY BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]

[53]

Sullivan N. A (Relatively Easy To Understand) Primer on Elliptic Curve Cryptogra-
phy. Weblog. Available from: https://blog.cloudflare.com/a-relatively-
easy-to-understand-primer-on-elliptic-curve-cryptography [Accessed
6th August 2018].

Buterin V. Exploring Elliptic Curve Pairings. Weblog. Available
from: https://medium.com/@VitalikButerin/exploring-elliptic-curve-
pairings-c73c1864e627 [Accessed 5th August 2018].

Buterin V. Zk-SNARKs: Under the Hood. Weblog. Available from:
https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-
b33151a013f6 [Accessed 5th August 2018].

Bellare M, Palacio A. The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols, . Available from: https://www.iacr.org/archive/
crypto2004/31520273/bp.pdf [Accessed 25th August 2018].

SCIPR Lab. libsnark. [Software] SCIPR Lab. Available from: https://github.
com/scipr-lab/libsnark. 2018.

Eberhardt J. ZoKrates. [Software] ZoKrates. Available from: https://github.
com/JacobEberhardt/ZoKrates. 2018.

Facebook, Inc. React. (Version 16.4) [Software] Facebook, Inc. Available from:
https://reactjs.org. 2018.

ConsenSys LLC. Web3. (Version 0.18.4) [Software] npm. Available from:
https://github.com/ethereum/web3. js. 2018.

Schlueter IZ. npm. [Software] npm. Available from: https://www.npmjs.com/
get—-npm. 2018.

Docker, Inc. Docker. (Version 18.03.1) [Software] Docker, Inc. Available from:
https://www.docker.com/get-started. 2018.

ConsenSys LLC. MetaMask. (Version 4.9.3) [Software] ConsenSys LLC. Avail-
able from: https://metamask.io. 2018.

Howlett A. Interviewed by: Morrison M. 21st August 2018.

Howlett A. Project Greshm. Available from: http://www.greshm.org/files/
greshm.pdf [Accessed 19th August 2018].

Lehto O. Interviewed by: Morrison M. 30th August 2018.

Adam Smith Institute. About the Adam Smith Institute. Available from: https:
//www.adamsmith.org/about-the-asi [Accessed 19th August 2018].

Lehto O. Basic Income Around The World: The Unexpected Benefits of Uncondi-
tional Cash Transfers. ASI (Research) Ltd, London, United Kingdom, 2018.

91

https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography
https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6
https://medium.com/@VitalikButerin/zk-snarks-under-the-hood-b33151a013f6
https://www.iacr.org/archive/crypto2004/31520273/bp.pdf
https://www.iacr.org/archive/crypto2004/31520273/bp.pdf
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/JacobEberhardt/ZoKrates
https://github.com/JacobEberhardt/ZoKrates
https://reactjs.org
https://github.com/ethereum/web3.js
https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://www.docker.com/get-started
https://metamask.io
http://www.greshm.org/files/greshm.pdf
http://www.greshm.org/files/greshm.pdf
https://www.adamsmith.org/about-the-asi
https://www.adamsmith.org/about-the-asi

BIBLIOGRAPHY BIBLIOGRAPHY

[54] Hulsbos L, Anca P. Interviewed by: Morrison M. 30th August 2018.

[55] Hulsbos L, Anca P. CircularUBI. Available from: http://www.circularubi.org
[Accessed 20th August 2018].

[56] Hirsch D. Interviewed by: Morrison M. 23rd August 2018.

[57] Joseph Rowntree Foundation. About the Joseph Rowntree Foundation, . Avail-
able from: https://www.jrf.org.uk/about-us [Accessed 20th August 2018].

[58] Brothers We Stand. About Brothers We Stand. Available from: https://www.
brotherswestand.com [Accessed 29th August 2018].

92

http://www.circularubi.org
https://www.jrf.org.uk/about-us
https://www.brotherswestand.com
https://www.brotherswestand.com

Glossary

A summary of the key terms used in this report can be found below.

Artificial Intelligence (AI): the development of systems that are able to perform
tasks typically associated with human intelligence, including visual recognition, decision-
making, among many others.

Basic Income Guarantee (BIG): another term for Universal Basic Income.

Blockchain: a digital database in which data is recorded chronologically in a verifi-
able and permanent way.

Cryptocurrency: a digital or virtual currency that uses cryptography and blockchain
technology.

Decentralised Borderless Voluntary Nation (DBVN): a virtual nation with all laws
and regulations hardcoded into smart contracts written on a blockchain.

Ethereum: a decentralised platform that runs smart contracts. These smart con-
tracts run on a custom built blockchain, an enormously powerful shared global in-
frastructure that can move value around and represent the ownership of property.

Ethereum Virtual Machine (‘EVM’): a run-time environment for smart contracts
on the Ethereum network.

Flint: a new type-safe, capabilities-secure, contract-oriented programming language
designed for writing robust smart contracts on Ethereum.

Low-level Lisp-like Language (‘LLL’): one of the original Ethereum smart contract
programming languages and it is a low level language similar to Assembly.

Negative Income Tax (NIT): a progressive income tax system where people earning
below a certain amount receive supplemental pay from the government instead of
paying taxes. Very similar to Universal Basic Income with only a few minor differ-
ences.

Smart Contracts: a section of executable code that run exactly as programmed on

93

BIBLIOGRAPHY BIBLIOGRAPHY

the blockchain without any possibility of downtime, censorship, fraud or third-party
interference.

Solidity: a high-level language that developers use to build decentralised applica-
tions. Solidity code is compiled into EVM byte-code and executed across every node
in the network.

Sybil Attack: where malicious users create fraudulent accounts in order to sub-
vert and impede the functionality of your system.

Universal Basic Income (UBI): a periodic cash payment unconditionally delivered
to all participants, regardless of income or any other factor.

Vyper: a smart contract development language built to be secure and simple. Cer-
tain functionality has been removed when compared to Solidity including modifiers
and function overloading.

Zero-Knowledge Proof: a cryptographic construct (or protocol) that allows one
party (Alice’) to prove to another party (‘Bob’) that they know a public value ‘¥,
without revealing any private information that has led to them knowing ‘x’.

zk-SNARK: a non-interactive zero-knowledge proof which is succinct (the messages
are very small in comparison to the size of the computation required) and the prover
will not be able to construct a proof/argument without knowing a so-called witness.

94

Appendix A
Ethics Checklist

Below can be found the LSEPI Checklist for this project summarising some of the
main ethical considerations:

Yes | No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? v
Does your project involve the use of human embryos? v
Does your project involve the use of human foetal tissues / cells? v
Section 2: HUMANS
Does your project involve human participants? v
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from v
Human Embryos/Foetuses i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or processing? v
Does it involve the collection and/or processing of sensitive personal v
data (e.g. health, sexual lifestyle, ethnicity, political opinion, religious
or philosophical conviction)?
Does it involve processing of genetic information? v
Does it involve tracking or observation of participants? It should be v
noted that this issue is not limited to surveillance or localization data. It
also applies to Wan data such as IP address, MACs, cookies etc.
Does your project involve further processing of previously collected per- v
sonal data (secondary use)? For example does your project involve
merging existing data sets?
Section 5: ANIMALS
Does your project involve animals? v

95

Chapter A. Ethics Checklist

Section 6: DEVELOPING COUNTRIES

(\

Does your project involve developing countries?

~

If your project involves low and/or lower-middle income countries, are
any benefit-sharing actions planned?

Could the situation in the country put the individuals taking part in the v
project at risk?

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to | v
the environment, animals or plants?

Does your project deal with endangered fauna and/or flora /protected v
areas?

Does your project involve the use of elements that may cause harm to v
humans, including project staff?

Does your project involve other harmful materials or equipment, e.g. v
high-powered laser systems?

Section 8: DUAL USE

Does your project have the potential for military applications? v

Does your project have an exclusive civilian application focus? v

Will your project use or produce goods or information that will require v
export licenses in accordance with legislation on dual use items?

Does your project affect current standards in military ethics e.g., global v
ban on weapons of mass destruction, issues of proportionality, discrim-
ination of combatants and accountability in drone and autonomous
robotics developments, incendiary or laser weapons?

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist v
abuse?

Does your project involve information on/or the use of biological-, v
chemical-, nuclear/radiological-security sensitive materials and explo-
sives, and means of their delivery?

Does your project involve the development of technologies or the cre- v
ation of information that could have severe negative impacts on human
rights standards (e.g. privacy, stigmatization, discrimination), if misap-
plied?

Does your project have the potential for terrorist or criminal abuse e.g. v
infrastructural vulnerability studies, cybersecurity related project?

Section 10: LEGAL ISSUES

96

Chapter A. Ethics Checklist

Will your project use or produce software for which there are copyright
licensing implications?

Will your project use or produce goods or information for which there
are data protection, or other legal implications?

Section 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration?

97

Appendix B

Legal, Social and Ethical
Considerations

Given the nature of this project and its direct implication for government policy,
it is extremely important to consider all of the legal, social and ethical considera-
tions. Whilst this project simply explored a theoretical implementation of such a
government-backed scheme, there are still a number of considerations that should
be made for full implementation, all of which have been thoroughly researched.

Given that a full deployment of this software would involve human participants
giving over sensitive personal data (e.g. National Insurance numbers) a significant
amount of focus needs to be placed on the security and proper use of this data. The
system has been designed in such a way that a user has full control over their per-
sonal data and, by using zero-knowledge proofs, this information is never broadcast
to the public Ethereum blockchain.

Secondly, the environmental impact of Bitcoin has been widely criticised, given its
large energy use in the mining process. Given that the same criticism can be made of
the Ethereum network (which has been utilised in the creation of our UBI coin), we
need to be aware of the potential negative environmental impact of such a scheme
and the perceptions around that.

Thirdly, there are some moral considerations to be made with respect to the gov-
ernment potentially having granular access to the spending habits of its citizens. As
such, it is important to have a clear ethical framework in place before the implemen-
tation of any scheme such as the one proposed in this paper.

Several interviews and user testing took place within this project. All participants
were between the ages of 25 and 50 (no children or minors) and were chosen from
a sample of individuals living in London and attending Imperial College London.
An oral statement was given by participants granting consent to use all results and
comments given in this report. If permission was not granted then the user or inter-
viewee was not included.

98

Appendix C

Non-Cryptocurrency UBI Experiments

Number of
Participants ('000)

Country/Organisation Brief Description Yearly Value (US$)

Took place across various states in the US and
USA and Canada areas in Canada. Results of the scheme were 1960-1980 Various ~8-9
ambiguous.

Alaska distributes an unconditional yearly
Alaska dividend to its residents linked to oil revenues. 1982-today ~200-2,000 ~630
Has ranged in value over the years.

Organised by various NGOs and church groups,
Namibia the execution was poor and no scientifically valid 2008-2009 ~120 ~1
results can be concluded.

Amonthly dividend paid to residents based on oil
Iran revenues of the state. Not a serious UBI scheme 2010-today ~600 ~50,000-72,000
given the low level of income received.

Organised by UNICEF, a number of villages
were given small cash transfers. Control groups
were used. These experiments saw arise in
living conditions, nutrition and health.

India 2010-2011 ~60 ~6

A privately funded UBI experiment. Of the 26k
Kenya participants, only 6k will be paid across the entire 2016-2027 ~300 ~26
experiment.

The charity 'Eight' are funding a two year UBI

scheme in the region of Fort Portal. 2017-2019 ~240 ~0.2

Uganda

Arandom sample of 2,000 unemployed people
aged 25 to 58 are being paid ~€580 per month by
the Finnish government, with no requirement to
seek o find employment.

Finland 2017-2019 ~8,000 ~2

Recruited ~3,000 people across two US states.
Randomly assign 1,000 participants to receive
US$1,000 per month for 3-5 years. The
remaining 2,000 will be used as a control group.

Y Combinator 2017-2022 ~12,000 ~2-3

A program that will pay ~4,000 participants
between the ages of 18 and 64. The participants
Canada will be amix of those in low-paying jobs and 2017-2020 ~13,000 ~4
those on social assistance. Amount decreases
with work.

Trials have received support from Nicola
Sturgeon and a £250k grant has been given to
support the project. Details have not been
announced.

Scotland 2018-unknown Unknown Unknown

Participants will be divided into four groups, each
of which will receive payments under different
conditions. The pilot program has not received
support from government as of writing.

Netherlands Unknown Unknown Unknown

Figure C.1: Summary of non-cryptocurrency UBI experiments

99

Appendix D

Cryptocurrency UBI Solutions

ERC20 Identification Crypto/Asset/Fiat Currency

Website Token Process Backed Distributed
Altrui.st https://altrui.st/ x x x Monero
BIG Foundation http://big.foundation/ v v X BIG
Bitnation https://tse.bitnation.co/ v x x XPAT
Cicada http://iamcicada.com/ x v x Unknown
Circles https://joincircles.net/ x x x Individual
Cubecoin https://cubecoin.net/ x v x CuB
C.uBI http://www.circularubi.org/ Unknown Unknown Unknown Unknown
Democracy Earth https://www.democracy.earth/ v X x VOTE
Duniter https://duniter.org/en/ x x x G1
Enumivo https://www.enumivo.org/ X X v ENU UBI Token
Frink https://frink.global/ x x x Frinks
Grantcoin http://www.grantcoin.org/ x x X Grantcoin (GRT)|
Greshm http://www.greshm.org/ x v v XGD
Group Income https://groupincome.org/ Unknown Unknown Unknown Unknown
Manna https://www.mannabase.com/ X X x MANNA
Project UBU https://www.projectubu.com/ v v X UBU and UBX
Resilience Project http://www.resilience.me/ Unknown Unknown Unknown Unknown
Solidar https://solidar.it/ x x x SDR
Steem Basic Income https://steemit.com/@steembasicincome x x x SBI
SwiftDemand https://www.swiftdemand.com/ x v x Swifts
The Kuwa Foundation http://www.kuwa.org/ x v x Unknown
UBIC http://www.ubiquicoin.com/ x v v BIQT
Ubit http://www.unibit.io/ x x x UBIT

Figure D.1: Summary of cryptocurrency UBI solutions

100

	1 Introduction
	1.1 Motivation
	1.2 Aims and Objectives
	1.3 Contributions
	1.4 Outline
	1.5 Legal, Ethical and Social Considerations
	1.6 Statement of Originality and Publications

	2 An Overview of UBI
	2.1 The History of UBI
	2.2 Arguments For UBI
	2.3 Arguments Against UBI
	2.4 The Growing Need for UBI
	2.5 Non-Cryptocurrency UBI Experiments
	2.6 Cryptocurrency UBI Solutions
	2.7 Wörglcoin

	3 Smart Contract Design
	3.1 An Overview of Ethereum
	3.2 Smart Contract Programming
	3.3 Functionality
	3.4 Security
	3.5 Optimisation
	3.6 Testing

	4 Identification
	4.1 The Identification Problem
	4.2 Existing Solutions
	4.3 Interactive Zero-Knowledge Proofs
	4.4 Non-Interactive Zero-Knowledge Proofs
	4.5 Zk-SNARKs in Ethereum
	4.6 WörglCoin's Identification System

	5 Using Wörglcoin
	5.1 Functionality Overview
	5.2 UBI Token Interface

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Interviews
	6.3 User Feedback
	6.4 Merchant Feedback
	6.5 Summarising the Feedback
	6.6 Addressing the Feedback

	7 Conclusion
	7.1 Summary of Achievements
	7.2 Evaluation Overview
	7.3 Applications
	7.4 Future Work

	Bibliography
	Glossary
	Appendices
	A Ethics Checklist
	B Legal, Social and Ethical Considerations
	C Non-Cryptocurrency UBI Experiments
	D Cryptocurrency UBI Solutions

